Cálculo I

Humberto José Bortolossi

Departamento de Matemática Aplicada Universidade Federal Fluminense

Aula 24

30 de junho de 2009

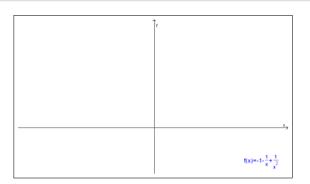
Exercícios

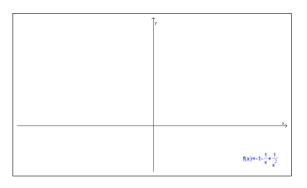
Roteiro

- (1) Domínio da função.
- (2) Interseção do gráfico da função com os eixos coordenados.
- (3) Simetrias: função par, função ímpar, função periódica.
- (4) Assíntotas horizontais e verticais.
- (5) Pontos onde a função não é derivável.
- (6) Intervalos de crescimento e decrescimento.
- (7) Máximos e mínimos locais.
- (8) Concavidade e pontos de inflexão.

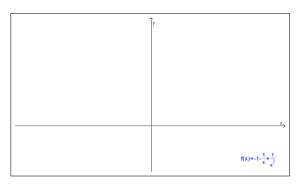
Exemplo

$$y = f(x) = -1 - \frac{1}{x} + \frac{1}{x^2}$$

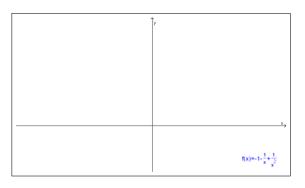




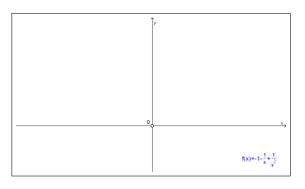
O domínio de
$$f$$
 é $D = \{x \in \mathbb{R} \mid x \neq 0 \in x^2 \neq 0\} = \mathbb{R} - \{0\}.$



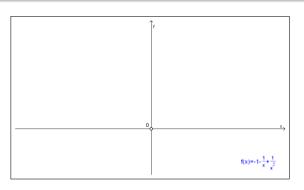
O domínio de
$$f$$
 é $D = \{x \in \mathbb{R} \mid x \neq 0 \text{ e } x^2 \neq 0\} = \mathbb{R} - \{0\}.$



O domínio de
$$f$$
 é $D = \{x \in \mathbb{R} \mid x \neq 0 \text{ e } x^2 \neq 0\} = \mathbb{R} - \{0\}.$



O domínio de
$$f$$
 é $D = \{x \in \mathbb{R} \mid x \neq 0 \text{ e } x^2 \neq 0\} = \mathbb{R} - \{0\}.$

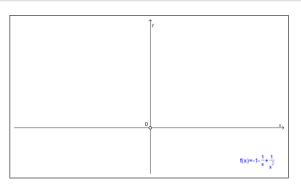


Como 0 não pertence ao domínio de f, segue-se que o gráfico de f não intercepta o eixo y. A interseção do gráfico com o eixo x é obtida fazendo-se f(x) = 0. Mas

$$f(x) = -1 - \frac{1}{x} + \frac{1}{x^2} = -\frac{x^2 + x - 1}{x^2} = 0 \quad \Rightarrow \quad x^2 + x - 1 = 0 \quad \Rightarrow \quad x = \frac{-1 - \sqrt{5}}{2} \text{ ou } x = \frac{-1 + \sqrt{5}}{2}.$$

Logo, o gráfico de f intercepta o eixo x nos pontos $((-1-\sqrt{5})/2,0)$ e $((-1+\sqrt{5})/2,0)$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 巨 の Q ()

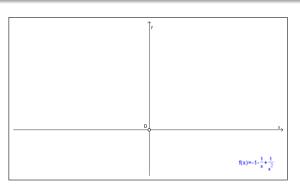


Como 0 não pertence ao domínio de f, segue-se que o gráfico de f não intercepta o eixo y. A interseção

do gráfico com o eixo x é obtida fazendo-se f(x) = 0. Ma

$$f(x) = -1 - \frac{1}{x} + \frac{1}{x^2} = -\frac{x^2 + x - 1}{x^2} = 0 \quad \Rightarrow \quad x^2 + x - 1 = 0 \quad \Rightarrow \quad x = \frac{-1 - \sqrt{5}}{2} \text{ ou } x = \frac{-1 + \sqrt{5}}{2}$$

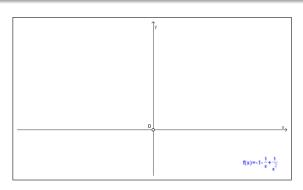
Logo, o gráfico de f intercepta o eixo x nos pontos $((-1-\sqrt{5})/2,0)$ e $((-1+\sqrt{5})/2,0)$.



Como 0 não pertence ao domínio de f, segue-se que o gráfico de f não intercepta o eixo y. A interseção do gráfico com o eixo x é obtida fazendo-se f(x) = 0 mas

$$f(x) = -1 - \frac{1}{x} + \frac{1}{x^2} = -\frac{x^2 + x - 1}{x^2} = 0 \quad \Rightarrow \quad x^2 + x - 1 = 0 \quad \Rightarrow \quad x = \frac{-1 - \sqrt{5}}{2} \text{ ou } x = \frac{-1 + \sqrt{5}}{2}$$

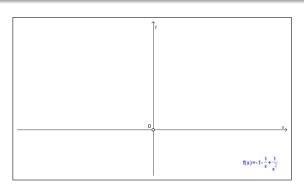
Logo, o gráfico de f intercepta o eixo x nos pontos $((-1-\sqrt{5})/2,0)$ e $((-1+\sqrt{5})/2,0)$.



Como 0 não pertence ao domínio de f, segue-se que o gráfico de f não intercepta o eixo y. A interseção do gráfico com o eixo x é obtida fazendo-se f(x) = 0.

$$f(x) = -1 - \frac{1}{x} + \frac{1}{x^2} = -\frac{x^2 + x - 1}{x^2} = 0 \quad \Rightarrow \quad x^2 + x - 1 = 0 \quad \Rightarrow \quad x = \frac{-1 - \sqrt{5}}{2} \text{ ou } x = \frac{-1 + \sqrt{5}}{2}$$

Logo, o gráfico de f intercepta o eixo x nos pontos $((-1-\sqrt{5})/2,0)$ e $((-1+\sqrt{5})/2,0)$.



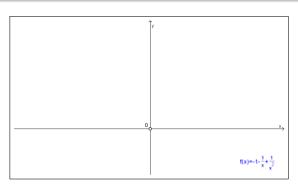
Como 0 não pertence ao domínio de f, segue-se que o gráfico de f não intercepta o eixo y. A interseção do gráfico com o eixo x é obtida fazendo-se f(x)=0. Mas

$$f(x) = -1 - \frac{1}{x} + \frac{1}{x^2} = -\frac{x^2 + x - 1}{x^2} = 0$$
 \Rightarrow $x^2 + x - 1 = 0$ \Rightarrow $x = \frac{-1 - \sqrt{5}}{2}$ ou $x = \frac{-1 + \sqrt{5}}{2}$

Logo, o gráfico de f intercepta o eixo x nos pontos $((-1-\sqrt{5})/2,0)$ e $((-1+\sqrt{5})/2,0)$.

◆□ ト ◆□ ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

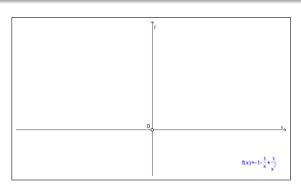
14



Como 0 não pertence ao domínio de f, segue-se que o gráfico de f não intercepta o eixo y. A interseção do gráfico com o eixo x é obtida fazendo-se f(x) = 0. Mas

$$f(x) = -1 - \frac{1}{x} + \frac{1}{x^2} = -\frac{x^2 + x - 1}{x^2} = 0 \quad \Rightarrow \quad x^2 + x - 1 = 0 \quad \Rightarrow \quad x = \frac{-1 - \sqrt{5}}{2} \text{ ou } x = \frac{-1 + \sqrt{5}}{2}$$

Logo, o gráfico de f intercepta o eixo x nos pontos $((-1-\sqrt{5})/2,0)$ e $((-1+\sqrt{5})/2,0)$.

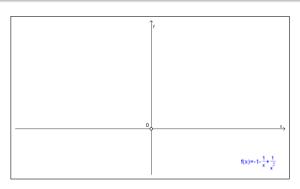


Como 0 não pertence ao domínio de f, segue-se que o gráfico de f não intercepta o eixo y. A interseção do gráfico com o eixo x é obtida fazendo-se f(x)=0. Mas

$$f(x) = -1 - \frac{1}{x} + \frac{1}{x^2} = -\frac{x^2 + x - 1}{x^2} = 0 \quad \Rightarrow \quad x^2 + x - 1 = 0 \quad \Rightarrow \quad x = \frac{-1 - \sqrt{5}}{2} \text{ ou } x = \frac{-1 + \sqrt{5}}{2}$$

Logo, o gráfico de f intercepta o eixo x nos pontos $((-1-\sqrt{5})/2,0)$ e $((-1+\sqrt{5})/2,0)$.

(□▶ ◀鬪▶ ◀불▶ ◀불▶ - 불 - 쒸٩♡

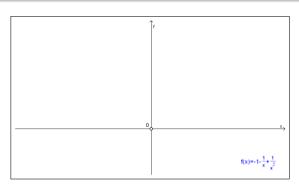


Como 0 não pertence ao domínio de f, segue-se que o gráfico de f não intercepta o eixo y. A interseção do gráfico com o eixo x é obtida fazendo-se f(x) = 0. Mas

$$f(x) = -1 - \frac{1}{x} + \frac{1}{x^2} = -\frac{x^2 + x - 1}{x^2} = 0 \quad \Rightarrow \quad x^2 + x - 1 = 0 \quad \Rightarrow \quad x = \frac{-1 - \sqrt{5}}{2} \text{ ou } x = \frac{-1 + \sqrt{5}}{2}.$$

Logo, o gráfico de f intercepta o eixo x nos pontos $((-1-\sqrt{5})/2,0)$ e $((-1+\sqrt{5})/2,0)$.

(□▶ ◀鬪▶ ◀불▶ ◀불▶ - 불 - 쒸٩♡



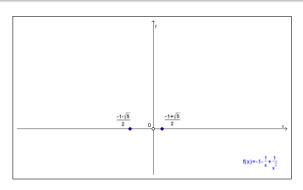
Como 0 não pertence ao domínio de f, segue-se que o gráfico de f não intercepta o eixo y. A interseção do gráfico com o eixo x é obtida fazendo-se f(x) = 0. Mas

$$f(x) = -1 - \frac{1}{x} + \frac{1}{x^2} = -\frac{x^2 + x - 1}{x^2} = 0 \quad \Rightarrow \quad x^2 + x - 1 = 0 \quad \Rightarrow \quad x = \frac{-1 - \sqrt{5}}{2} \text{ ou } x = \frac{-1 + \sqrt{5}}{2}.$$

Logo, o gráfico de f intercepta o eixo x nos pontos $((-1-\sqrt{5})/2,0)$ e $((-1+\sqrt{5})/2,0)$.

<□▶<∰▶<≣▶<≣▶ = </p>

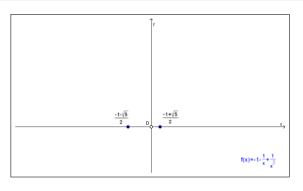
18



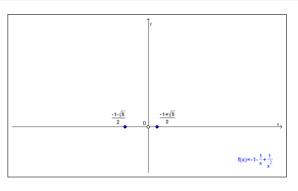
Como 0 não pertence ao domínio de f, segue-se que o gráfico de f não intercepta o eixo y. A interseção do gráfico com o eixo x é obtida fazendo-se f(x)=0. Mas

$$f(x) = -1 - \frac{1}{x} + \frac{1}{x^2} = -\frac{x^2 + x - 1}{x^2} = 0 \quad \Rightarrow \quad x^2 + x - 1 = 0 \quad \Rightarrow \quad x = \frac{-1 - \sqrt{5}}{2} \text{ ou } x = \frac{-1 + \sqrt{5}}{2}.$$

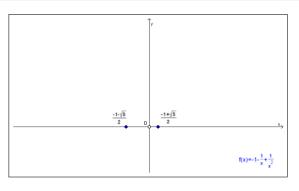
Logo, o gráfico de f intercepta o eixo x nos pontos $((-1-\sqrt{5})/2,0)$ e $((-1+\sqrt{5})/2,0)$.



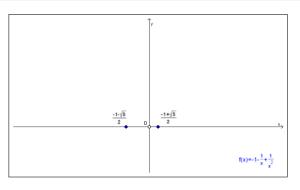
Como f(-2) = -1/4 e f(2) = -5/4, segue-se que f não é uma função par (pois $f(-2) \neq f(2)$) e f não é uma função impar (pois $f(-2) \neq -f(2)$).



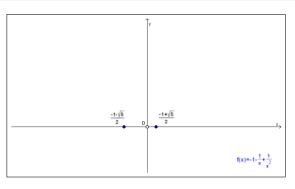
Como f(-2) = -1/4 $\Rightarrow f(2) = -5/4$, segue-se que f não é uma função par (pois $f(-2) \neq f(2)$) e f não é uma função impar (pois $f(-2) \neq -f(2)$).



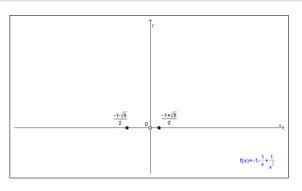
Como f(-2) = -1/4 e f(2) = -5/4, segue-se que f não é uma função par (pois $f(-2) \neq f(2)$) e f não é uma função impar (pois $f(-2) \neq -f(2)$).



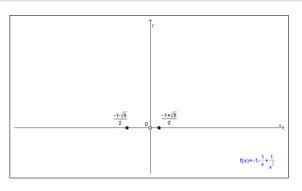
Como f(-2) = -1/4 e f(2) = -5/4, segue-se que f não é uma função par $(pois f(-2) \neq f(2))$ e f não é uma função impar $(pois f(-2) \neq f(2))$.



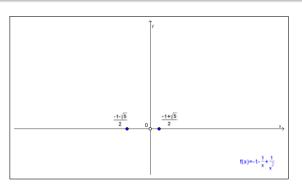
Como f(-2) = -1/4 e f(2) = -5/4, segue-se que f não é uma função par (pois $f(-2) \neq f(2)$) e f não é uma função impar (pois $f(-2) \neq f(2)$).



Como f(-2) = -1/4 e f(2) = -5/4, segue-se que f não é uma função par (pois $f(-2) \neq f(2)$) e f não é uma função ímpar (pois $f(-2) \neq -f(2)$).



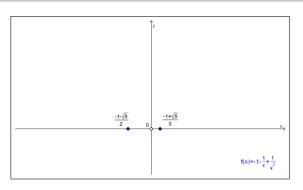
Como f(-2) = -1/4 e f(2) = -5/4, segue-se que f não é uma função par (pois $f(-2) \neq f(2)$) e f não é uma função ímpar (pois $f(-2) \neq -f(2)$).



Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^- e \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^+,$$

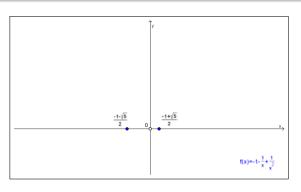
concluímos que a reta y = -1 é a única assíntota horizontal do gráfico de f.



Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^- e \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^+,$$

concluímos que a reta y = -1 é a única assíntota horizontal do gráfico de f.

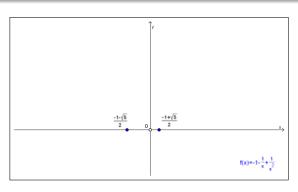


Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^- \Theta \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^+,$$

concluímos que a reta y = -1 é a única assíntota horizontal do gráfico de f.

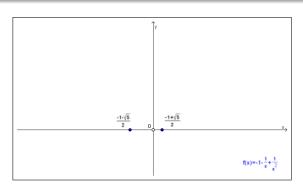
29



Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1 - \theta \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^+,$$

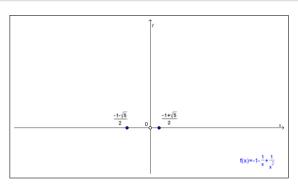
concluímos que a reta y = -1 é a única assíntota horizontal do gráfico de f.



Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^- \oplus \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^+,$$

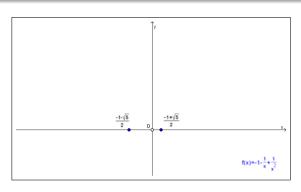
concluímos que a reta y = -1 é a única assíntota horizontal do gráfico de f.



Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^- e \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^+,$$

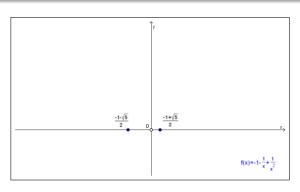
concluímos que a reta y = -1 é a única assíntota horizontal do gráfico de f.



Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^- e \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^+,$$

concluímos que a reta y = -1 é a única assíntota horizontal do gráfico de f.

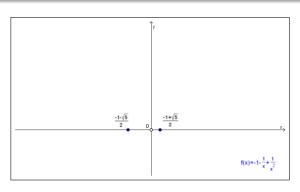


Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^- \text{ e } \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^+$$

concluímos que a reta y = -1 é a única assíntota horizontal do gráfico de f

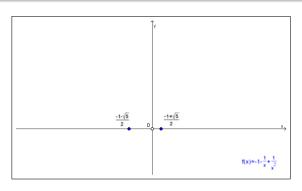
34



Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^- e \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^+$$

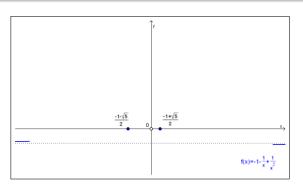
concluímos que a reta y = -1 é a única assíntota horizontal do gráfico de f.



Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^- e \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^+,$$

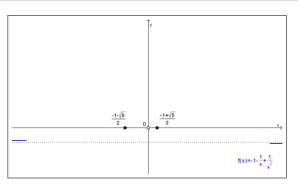
concluímos que a reta y = -1 é a única assíntota horizontal do gráfico de f.



Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^- e \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1^+,$$

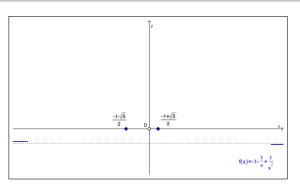
concluímos que a reta y = -1 é a única assíntota horizontal do gráfico de f.



Como f é contínua em $x \neq 0$, a única candidata à assíntota vertical é a reta x = 0. Agora, como

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -\frac{x^2 + x - 1}{x^2} = +\infty \quad \text{e} \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -\frac{x^2 + x - 1}{x^2} = +\infty,$$

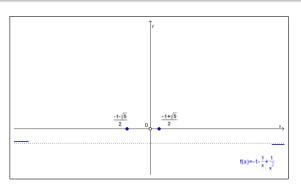
concluímos que, de fato, a retas x = 0 é uma assintota vertical do gráfico de f.



Como f é contínua em $x \neq 0$, a única candidata à assíntota vertical é a reta x = 0. Agora, como

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x^2 + x - 1}{x^2} = +\infty \quad \text{e} \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{x^2 + x - 1}{x^2} = +\infty,$$

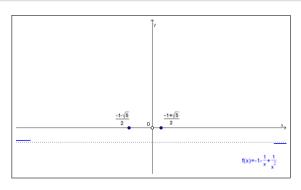
concluímos que, de fato, a retas x = 0 é uma assíntota vertical do gráfico de f.



Como f é contínua em $x \neq 0$, a única candidata à assíntota vertical é a reta x = 0. Agora, como

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -\frac{x^2 + x - 1}{x^2} = +\infty \quad \text{e} \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -\frac{x^2 + x - 1}{x^2} = +\infty,$$

concluímos que, de fato, a retas x = 0 é uma assintota vertical do gráfico de f.

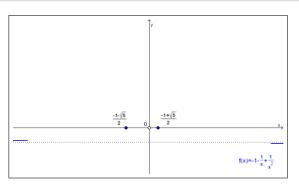


Como f é contínua em $x \neq 0$, a única candidata à assíntota vertical é a reta x = 0. Agora, como

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} -\frac{x^2+x-1}{x^2} = +\infty \quad \text{o} \quad \lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} -\frac{x^2+x-1}{x^2} = +\infty,$$

concluímos que, de fato, a retas x = 0 é uma assintota vertical do gráfico de f.

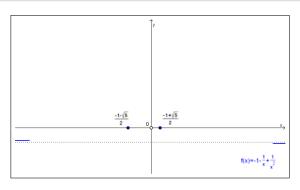
41



Como f é contínua em $x \neq 0$, a única candidata à assíntota vertical é a reta x = 0. Agora, como

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -\frac{x^2 + x - 1}{x^2} = +\infty \quad \text{o} \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -\frac{x^2 + x - 1}{x^2} = +\infty,$$

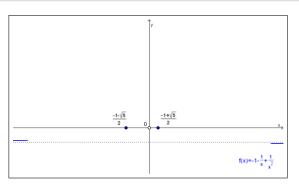
concluímos que, de fato, a retas x = 0 é uma assintota vertical do gráfico de f.



Como f é contínua em $x \neq 0$, a única candidata à assíntota vertical é a reta x = 0. Agora, como

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -\frac{x^2 + x - 1}{x^2} = +\infty \quad \text{e} \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -\frac{x^2 + x - 1}{x^2} = +\infty.$$

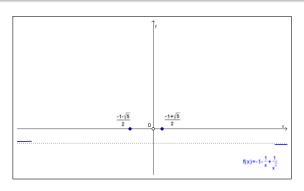
concluímos que, de fato, a retas x = 0 é uma assintota vertical do gráfico de f.



Como f é contínua em $x \neq 0$, a única candidata à assíntota vertical é a reta x = 0. Agora, como

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -\frac{x^2 + x - 1}{x^2} = +\infty \quad \text{e} \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -\frac{x^2 + x - 1}{x^2} = +\infty.$$

concluímos que, de fato, a retas x = 0 é uma assíntota vertical do gráfico de f.

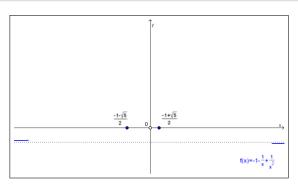


Como f é contínua em $x \neq 0$, a única candidata à assíntota vertical é a reta x = 0. Agora, como

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -\frac{x^2 + x - 1}{x^2} = +\infty \quad \text{e} \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -\frac{x^2 + x - 1}{x^2} = +\infty$$

concluímos que, de fato, a retas x = 0 é uma assíntota vertical do gráfico de f.

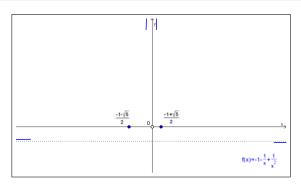
<□▶<□▶<≣▶<≣▶ = 900



Como f é contínua em $x \neq 0$, a única candidata à assíntota vertical é a reta x = 0. Agora, como

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -\frac{x^2 + x - 1}{x^2} = +\infty \quad \text{e} \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -\frac{x^2 + x - 1}{x^2} = +\infty,$$

concluímos que, de fato, a retas x = 0 é uma assíntota vertical do gráfico de f.



Como f é contínua em $x \neq 0$, a única candidata à assíntota vertical é a reta x = 0. Agora, como

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -\frac{x^2 + x - 1}{x^2} = +\infty \quad \text{e} \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -\frac{x^2 + x - 1}{x^2} = +\infty,$$

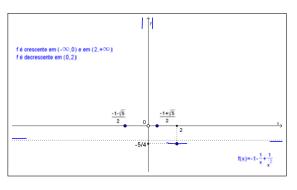
concluímos que, de fato, a retas x = 0 é uma assíntota vertical do gráfico de f.

(5) Pontos onde a função não é derivável

```
fé crescente em (-\infty,0) e em (2,+\infty)
fé decrescente em (0,2)
\frac{-1+\sqrt{5}}{2} \qquad 0
\frac{-1+\sqrt{5}}{2}
\frac{2}{2}
\frac{-5/4}{4}
f(x)=-1-\frac{1}{x}+\frac{1}{x}
```

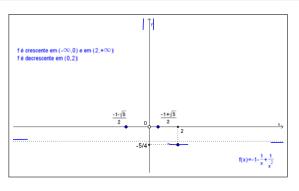
A função f é derivável como subtração, multiplicação e divisão de funções deriváveis. Logo, o gráfico de f não possui "bicos" e nem pontos onde a reta tangente é vertical.

(5) Pontos onde a função não é derivável

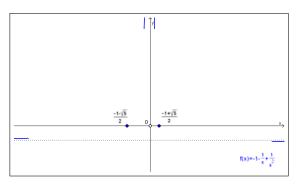


A função f é derivável como subtração, multiplicação e divisão de funções deriváveis. Logo, o gráfico

(5) Pontos onde a função não é derivável

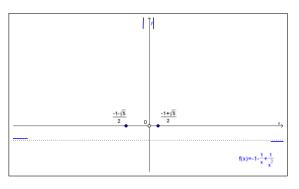


A função f é derivável como subtração, multiplicação e divisão de funções deriváveis. Logo, o gráfico de f não possui "bicos" e nem pontos onde a reta tangente é vertical.



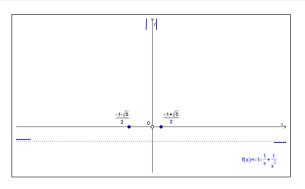
Temos que $f'(x) = (x-2)/x^3$. O estudo do sinal da derivada nos dá

Assim, f é crescente no intervalo $(-\infty,0)$, f é crescente em $(2,+\infty)$ e f é decrescente em (0,2).

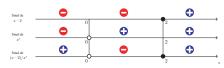


Temos que $f'(x) = (x-2)/x^3$. O estudo do sinal da derivada nos dá

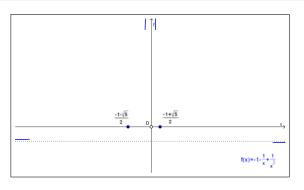
Assim, f é crescente no intervalo $(-\infty,0)$, f é crescente em $(2,+\infty)$ e f é decrescente em (0,2).



Temos que $f'(x) = (x-2)/x^3$ O estudo do sinal da derivada nos dá



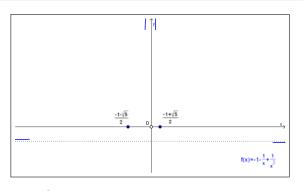
Assim, f é crescente no intervalo $(-\infty,0)$, f é crescente em $(2,+\infty)$ e f é decrescente em (0,2).



Temos que $f'(x) = (x-2)/x^3$. O estudo do sinal da derivada nos dá

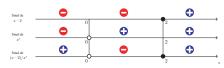


Assim, f é crescente no intervalo $(-\infty,0)$ f é crescente em $(2,+\infty)$ e f é decrescente em (0,2).



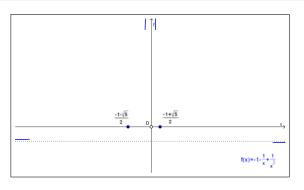
Temos que $f'(x) = (x-2)/x^3$. O estudo do sinal da derivada nos dá

Aula 24

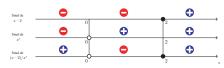


Assim, f é crescente no intervalo $(-\infty,0)$, f é crescente em $(2,+\infty)$ o f é decrescente em (0,2).

Cálculo I

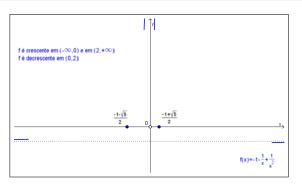


Temos que $f'(x) = (x-2)/x^3$. O estudo do sinal da derivada nos dá



Assim, f é crescente no intervalo $(-\infty,0)$, f é crescente em $(2,+\infty)$ e f é decrescente em (0,2).

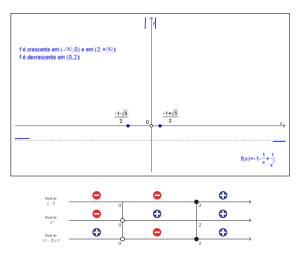
Cálculo I



Temos que $f'(x) = (x-2)/x^3$. O estudo do sinal da derivada nos dá



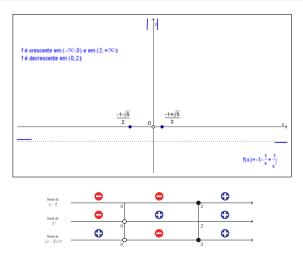
Assim, f é crescente no intervalo $(-\infty,0)$, f é crescente em $(2,+\infty)$ e f é decrescente em (0,2).



Vimos no item anterior que o único ponto crítico de f é p=2. Como, em p=2, o sinal da derivada muda de para +, concluimos pelo teste da derivada primeira que p=0 é ponto de mínimo local de f

em D

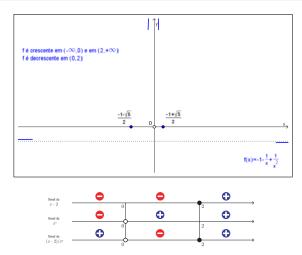
58



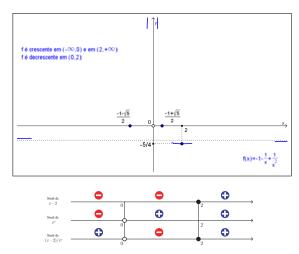
Vimos no item anterior que o único ponto crítico de f é p=2. Como, em p=2, o sinal da derivada muda de - para + constituidada ponto de aporto de ponto de p=1.

em D.

59

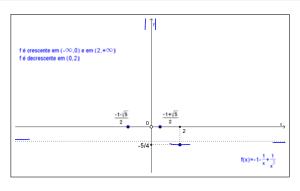


Vimos no item anterior que o único ponto crítico de f é p=2. Como, em p=2, o sinal da derivada muda de - para +, concluímos pelo teste da derivada primeira que p=0 é ponto de mínimo local de f em D.



Vimos no item anterior que o único ponto crítico de f é p=2. Como, em p=2, o sinal da derivada muda de - para +, concluímos pelo teste da derivada primeira que p=0 é ponto de mínimo local de f em D.

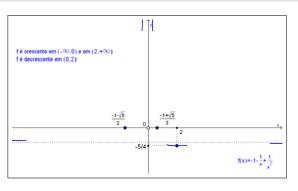
61



Temos que $f''(x) = -2(x-3)/x^4$. Como $x^4 > 0$ para todo $x \in \mathbb{R} - \{0\}$, segue-se que o sinal da derivada segunda é o sinal de -2(x-3). Assim,

$$f''(x) > 0 \Leftrightarrow x < 3 \pmod{x \neq 0}$$
 e $f''(x) < 0 \Leftrightarrow x > 3$

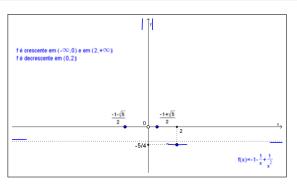
Consequentemente, f é côncava para cima em $(-\infty,0)$ e (0,3). A função f é côncava para baixo em $(3,+\infty)$. O ponto p=3 é o único ponto de inflexão do gráfico de f.



Temos que $f''(x) = -2(x-3)/x^4$. Como $x^4 > 0$ para todo $x \in \mathbb{R} - \{0\}$, segue-se que o sinal da derivada segunda é o sinal de -2(x-3). Assim,

$$f''(x) > 0 \Leftrightarrow x < 3 \pmod{x \neq 0}$$
 e $f''(x) < 0 \Leftrightarrow x > 3$.

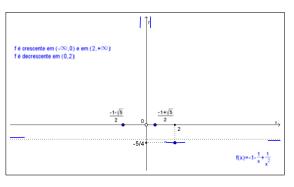
Consequentemente, f é côncava para cima em $(-\infty,0)$ e (0,3). A função f é côncava para baixo em $(3,+\infty)$. O ponto p=3 é o único ponto de inflexão do gráfico de f.



Temos que $f''(x) = -2(x-3)/x^4$. Como $x^4 > 0$ para todo $x \in \mathbb{R} - \{0\}$, segue-se que o sinal da derivada segunda é o sinal de -2(x-3). Assim,

$$f''(x) > 0 \Leftrightarrow x < 3 \pmod{x \neq 0}$$
 e $f''(x) < 0 \Leftrightarrow x > 3$.

Consequentemente, f é côncava para cima em $(-\infty,0)$ e (0,3). A função f é côncava para baixo em $(3,+\infty)$. O ponto p=3 é o único ponto de inflexão do gráfico de f.



Temos que $f''(x) = -2(x-3)/x^4$. Como $x^4 > 0$ para todo $x \in \mathbb{R} - \{0\}$ segue-se que o sinal da derivada segunda é o sinal de -2(x-3). Assim,

$$f''(x) > 0 \Leftrightarrow x < 3 \pmod{x \neq 0}$$
 e $f''(x) < 0 \Leftrightarrow x > 3$.

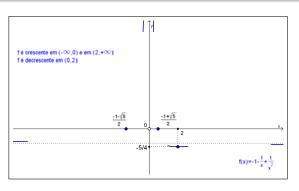
Consequentemente, f é côncava para cima em $(-\infty,0)$ e (0,3). A função f é côncava para baixo em $(3,+\infty)$. O ponto p=3 é o único ponto de inflexão do gráfico de f.



Temos que $f''(x) = -2(x-3)/x^4$. Como $x^4 > 0$ para todo $x \in \mathbb{R} - \{0\}$, segue-se que o sinal da derivada segunda é o sinal de -2(x-3). Assum

$$f''(x) > 0 \Leftrightarrow x < 3 \pmod{x \neq 0}$$
 e $f''(x) < 0 \Leftrightarrow x > 3$

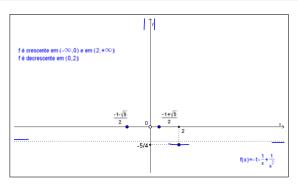
Consequentemente, f é côncava para cima em $(-\infty,0)$ e (0,3). A função f é côncava para baixo em $(3,+\infty)$. O ponto p=3 é o único ponto de inflexão do gráfico de f.



Temos que $f''(x) = -2(x-3)/x^4$. Como $x^4 > 0$ para todo $x \in \mathbb{R} - \{0\}$, segue-se que o sinal da derivada segunda é o sinal de -2(x-3). Assim,

$$f''(x) > 0 \Leftrightarrow x < 3 \pmod{x \neq 0}$$

Consequentemente, f é côncava para cima em $(-\infty,0)$ e (0,3). A função f é côncava para baixo em $(3,+\infty)$. O ponto p=3 é o único ponto de inflexão do gráfico de f.

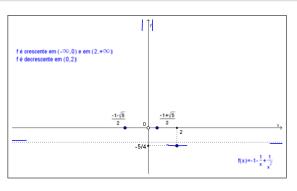


Temos que $f''(x) = -2(x-3)/x^4$. Como $x^4 > 0$ para todo $x \in \mathbb{R} - \{0\}$, segue-se que o sinal da derivada segunda é o sinal de -2(x-3). Assim,

$$f''(x)>0 \Leftrightarrow x<3 \ (\text{com}\ x\neq 0) \qquad \text{e} \qquad f''(x)<0 \Leftrightarrow x>3.$$

Consequentemente, f é côncava para cima em $(-\infty,0)$ e (0,3). A função f é côncava para baixo em $(3,+\infty)$. O ponto p=3 é o único ponto de inflexão do gráfico de f.

68



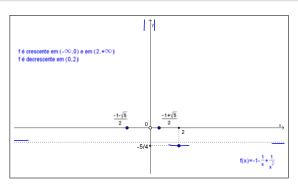
Temos que $f''(x) = -2(x-3)/x^4$. Como $x^4 > 0$ para todo $x \in \mathbb{R} - \{0\}$, segue-se que o sinal da derivada segunda é o sinal de -2(x-3). Assim,

$$f''(x) > 0 \Leftrightarrow x < 3 \pmod{x \neq 0}$$
 e $f''(x) < 0 \Leftrightarrow x > 3$.

Consequentemente, f é côncava para cima em $(-\infty,0)$ e (0,3) A função f é côncava para baixo em $(3,+\infty)$. O ponto p=3 e o unico ponto de inflexão do grafico de f.

□ > < □ > < 亘 > < 亘 > ○ ■ ● ○ ○ ○

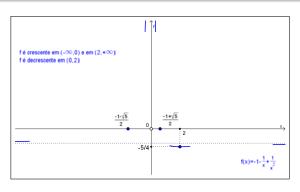
69



Temos que $f''(x) = -2(x-3)/x^4$. Como $x^4 > 0$ para todo $x \in \mathbb{R} - \{0\}$, segue-se que o sinal da derivada segunda é o sinal de -2(x-3). Assim,

$$f''(x) > 0 \Leftrightarrow x < 3 \pmod{x \neq 0}$$
 e $f''(x) < 0 \Leftrightarrow x > 3$.

Consequentemente, f é côncava para cima em $(-\infty,0)$ e (0,3). A função f é côncava para baixo em $(3,+\infty)$. O porto para de o unico porto de inflexació de grando de f

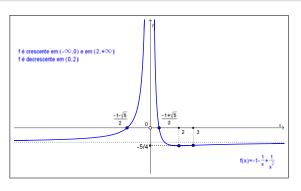


Temos que $f''(x) = -2(x-3)/x^4$. Como $x^4 > 0$ para todo $x \in \mathbb{R} - \{0\}$, segue-se que o sinal da derivada segunda é o sinal de -2(x-3). Assim,

$$f''(x) > 0 \Leftrightarrow x < 3 \pmod{x \neq 0}$$
 e $f''(x) < 0 \Leftrightarrow x > 3$.

Consequentemente, f é côncava para cima em $(-\infty,0)$ e (0,3). A função f é côncava para baixo em $(3,+\infty)$. O ponto p=3 é o único ponto de inflexão do gráfico de f.

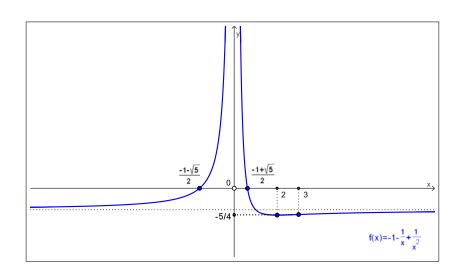
<□ > <□ > <□ > < = > < = > < > < ○



Temos que $f''(x) = -2(x-3)/x^4$. Como $x^4 > 0$ para todo $x \in \mathbb{R} - \{0\}$, segue-se que o sinal da derivada segunda é o sinal de -2(x-3). Assim,

$$f''(x) > 0 \Leftrightarrow x < 3 \pmod{x \neq 0}$$
 e $f''(x) < 0 \Leftrightarrow x > 3$.

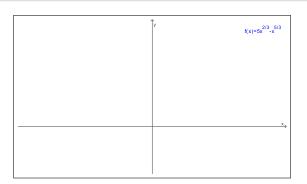
Consequentemente, f é côncava para cima em $(-\infty,0)$ e (0,3). A função f é côncava para baixo em $(3,+\infty)$. O ponto p=3 é o único ponto de inflexão do gráfico de f.



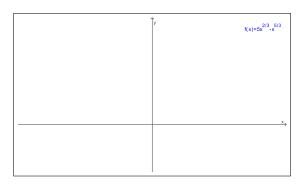
Exemplo

$$y = f(x) = 5 x^{2/3} - x^{5/3}$$

(1) Domínio da função

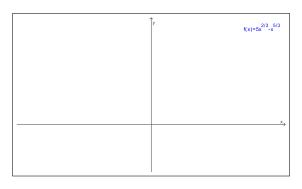


(1) Domínio da função

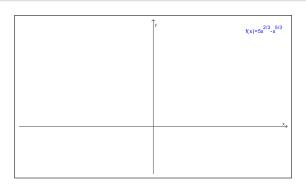


O domínio de $f \in D = \mathbb{R}$.

(1) Domínio da função



O domínio de $f \in D = \mathbb{R}$.



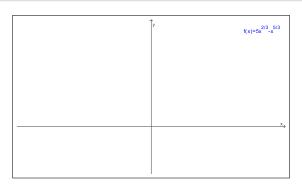
A interseção do gráfico com o eixo y é obtida fazendo-se x = 0. Como f(0) = 0, segue-se que o gráfico de f intercepta o eixo y no ponto (0,0). A interseção do gráfico com o eixo x é obtida fazendo-se f(x) = 0. Mas

$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5 - x) = 0 \implies x = 0 \text{ ou } x = 5.$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0)

<ロ > < 回 > < 回 > < 巨 > < 巨 > 巨 の Q ()

78

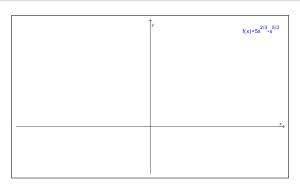


A interseção do gráfico com o eixo y é obtida fazendo-se x=0. Como f(0)=0, segue-se que o gráfico de f interseção do gráfico com o eixo x é obtida fazendo-se f(x)=0. Mas

$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5 - x) = 0 \implies x = 0 \text{ ou } x = 5.$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0)

79



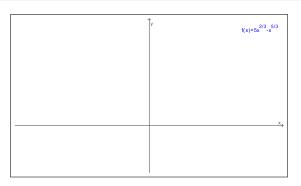
A interseção do gráfico com o eixo y é obtida fazendo-se x=0. Como f(0)=0, segue-se que o gráfico de f intercepta o eixo y no ponto (0,0). A interseção do gráfico com o eixo x é obtida fazendo-se f(x)=0. Mas

$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5-x) = 0 \implies x = 0 \text{ ou } x = 5.$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0)

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

80



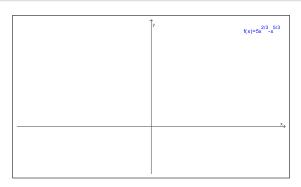
A interseção do gráfico com o eixo y é obtida fazendo-se x=0. Como f(0)=0, segue-se que o gráfico de f intercepta o eixo y no ponto (0,0). A interseção do gráfico com o eixo x é obtida fazendo-se

$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5 - x) = 0 \implies x = 0 \text{ ou } x = 5$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0)

(ロ) (回) (目) (目) (目) (2) (2)

81



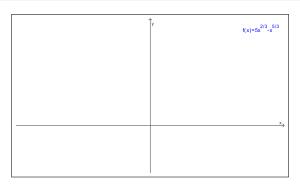
A interseção do gráfico com o eixo y é obtida fazendo-se x=0. Como f(0)=0, segue-se que o gráfico de f intercepta o eixo y no ponto

$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5 - x) = 0 \implies x = 0 \text{ ou } x = 5$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0).

4 D > 4 B > 4 B > 4 B > 9 Q C

82



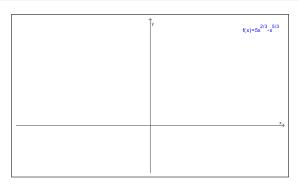
A interseção do gráfico com o eixo y é obtida fazendo-se x = 0. Como f(0) = 0, segue-se que o gráfico de f intercepta o eixo y no ponto (0,0).

$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5 - x) = 0 \implies x = 0 \text{ ou } x = 5.$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0).

←□ → ←□ → ←□ → □ → へへ○

83



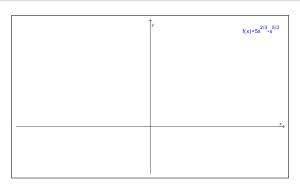
A interseção do gráfico com o eixo y é obtida fazendo-se x=0. Como f(0)=0, segue-se que o gráfico de f intercepta o eixo y no ponto (0,0). A interseção do gráfico com o eixo x é obtida fazendo-se

$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5 - x) = 0 \implies x = 0 \text{ ou } x = 5.$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0).

<ロト < 回 > < 巨 > < 巨 > く 巨 > し 巨 ・ り < @

84



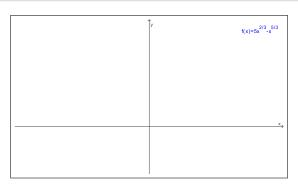
A interseção do gráfico com o eixo y é obtida fazendo-se x=0. Como f(0)=0, segue-se que o gráfico de f intercepta o eixo y no ponto (0,0). A interseção do gráfico com o eixo x é obtida fazendo-se f(x)=0. Mas

$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5 - x) = 0 \implies x = 0 \text{ ou } x = 5.$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0).

(ロ) (個) (量) (量) (量) (型) のQ(で)

85



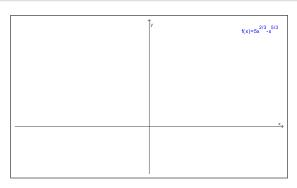
A interseção do gráfico com o eixo y é obtida fazendo-se x=0. Como f(0)=0, segue-se que o gráfico de f intercepta o eixo y no ponto (0,0). A interseção do gráfico com o eixo x é obtida fazendo-se f(x)=0. Mas

$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5 - x) = 0 \implies x = 0 \text{ ou } x = 5.$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0).

(ロ) (레) (토) (토) (토) (인()

86



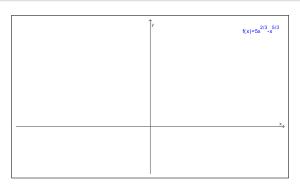
A interseção do gráfico com o eixo y é obtida fazendo-se x=0. Como f(0)=0, segue-se que o gráfico de f intercepta o eixo y no ponto (0,0). A interseção do gráfico com o eixo x é obtida fazendo-se f(x)=0. Mas

$$f(x) = 5x^{2/3} - x^{5/3} = 0$$
 $\Rightarrow x^{2/3}(5-x) = 0$ $\Rightarrow x = 0$ ou $x = 5$.

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0)

<ロト < 回 > < 巨 > < 巨 > く 巨 > し 巨 ・ り < @

87



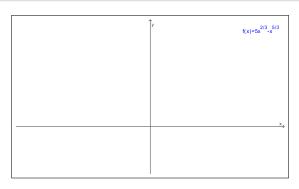
A interseção do gráfico com o eixo y é obtida fazendo-se x=0. Como f(0)=0, segue-se que o gráfico de f intercepta o eixo y no ponto (0,0). A interseção do gráfico com o eixo x é obtida fazendo-se f(x)=0. Mas

$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5 - x) = 0 \implies x = 0 \text{ ou } x = 5$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0)

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

88



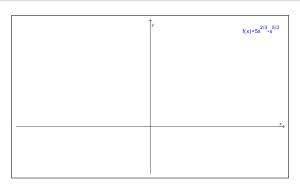
A interseção do gráfico com o eixo y é obtida fazendo-se x=0. Como f(0)=0, segue-se que o gráfico de f intercepta o eixo y no ponto (0,0). A interseção do gráfico com o eixo x é obtida fazendo-se f(x)=0. Mas

$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5 - x) = 0 \implies x = 0 \text{ ou } x = 5.$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0)

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

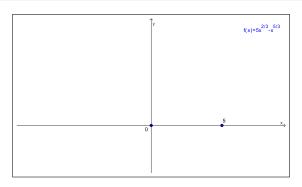
89



A interseção do gráfico com o eixo y é obtida fazendo-se x=0. Como f(0)=0, segue-se que o gráfico de f intercepta o eixo y no ponto (0,0). A interseção do gráfico com o eixo x é obtida fazendo-se f(x)=0. Mas

$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5 - x) = 0 \implies x = 0 \text{ ou } x = 5.$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0).

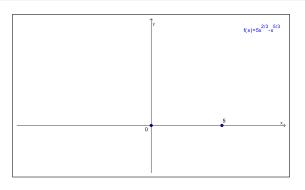


A interseção do gráfico com o eixo y é obtida fazendo-se x=0. Como f(0)=0, segue-se que o gráfico de f intercepta o eixo y no ponto (0,0). A interseção do gráfico com o eixo x é obtida fazendo-se f(x)=0. Mas

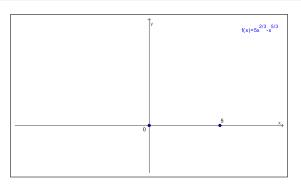
$$f(x) = 5x^{2/3} - x^{5/3} = 0 \implies x^{2/3}(5 - x) = 0 \implies x = 0 \text{ ou } x = 5.$$

Logo, o gráfico de f intercepta o eixo x nos pontos (0,0) e (5,0).

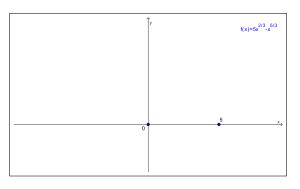
<ロト < 回 > < 巨 > < 巨 > く 巨 > し 巨 ・ り < @



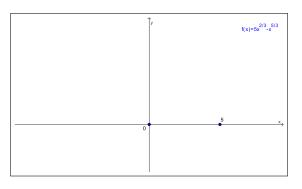
Como f(-1) = 6 e f(1) = 4, segue-se que f não é uma função par (pois $f(-1) \neq f(1)$) e f não é uma função ímpar (pois $f(-1) \neq -f(1)$).



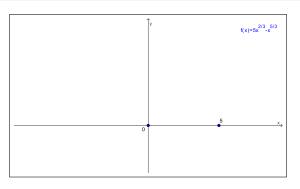
Como f(-1) = 6 e f(1) = 4, segue-se que f não é uma função par (pois $f(-1) \neq f(1)$) e f não é uma função impar (pois $f(-1) \neq -f(1)$).



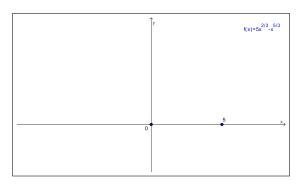
Como f(-1) = 6 e f(1) = 4 segue-se que f não é uma função par (pois $f(-1) \neq f(1)$) e f não é uma função impar (pois $f(-1) \neq -f(1)$).



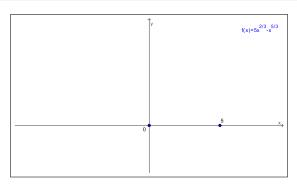
Como f(-1) = 6 e f(1) = 4, segue-se que f não é uma função par $(pois f(-1) \neq f(1))$ e f não é uma função impar $(pois f(-1) \neq -f(1))$.



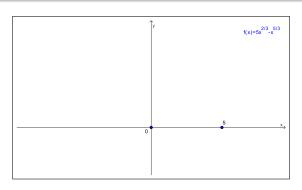
Como f(-1) = 6 e f(1) = 4, segue-se que f não é uma função par (pois $f(-1) \neq f(1)$) e f não é uma função impar (pois $f(-1) \neq -f(1)$).



Como f(-1)=6 e f(1)=4, segue-se que f não é uma função par (pois $f(-1)\neq f(1)$) e f não é uma função ímpar (pois $f(-1)\neq f(1)$).



Como f(-1) = 6 e f(1) = 4, segue-se que f não é uma função par (pois $f(-1) \neq f(1)$) e f não é uma função ímpar (pois $f(-1) \neq -f(1)$).



Vamos determinar primeiro as assíntotas horizontais. Como

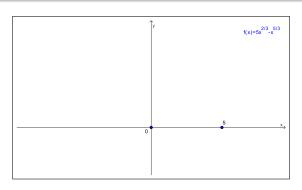
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} \left(5 - x \right) = -\infty$$

е

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} \left(5 - x \right) = +\infty,$$

concluímos que o gráfico de f não possui assíntotas horizontais. O gráfico de f não possui assíntotas verticais, pois f é contínua em \mathbb{R} .

99



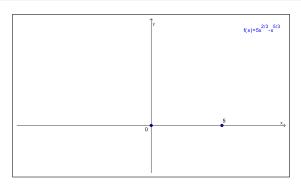
Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} \left(5 - x \right) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} \left(5 - x \right) = +\infty$$

concluimos que o gratico de r nao possul assintotas nonzontais. O gratico de r nao possul assintotas verticais, pois f é contínua em \mathbb{R} .

←□ → ←□ → ← 重 → へ 重 → の へ ○



Vamos determinar primeiro as assíntotas horizontais. Como

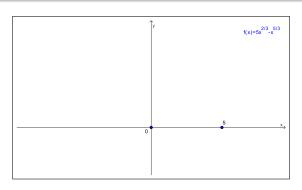
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} \left(5 - x \right) = -\infty$$

 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} (5x^{2/3} - x^{5/3})$

concluímos que o gráfico de f não possui assíntotas horizontais. O gráfico de f não possui assíntotas verticais, pois f é contínua em \mathbb{R} .

◆□▶◆□▶◆■▶◆■▶ ■ 900

101



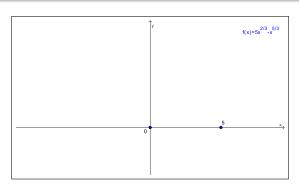
Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} (5 - x) = -\infty$$

 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} \left(5 - \frac{1}{2} \right)$

concluímos que o gráfico de f não possui assíntotas horizontais. O gráfico de f não possui assíntotas verticais, pois f é contínua em \mathbb{R} .

4□ > 4□ > 4 = > 4 = > = 90



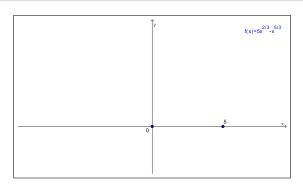
Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} \left(5 - x \right) = -\infty$$

е

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} (5 - x) = +\infty,$$

concluimos que o grafico de r não possul assintotas norizontais. O grafico de r não possul assintotas verticais, pois f é contínua em \mathbb{R} .



Vamos determinar primeiro as assíntotas horizontais. Como

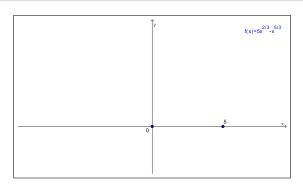
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} (5 - x) = -\infty$$

е

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} \left(5 - x \right) = +\infty,$$

concluimos que o grafico de t nao possul assintotas horizontais. O grafico de t nao possul assintotas verticais, pois t é contínua em $\mathbb R$.

4□ > 4回 > 4 = > 4 = > = 9 q @



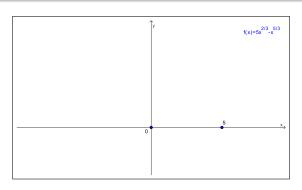
Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} (5 - x) = -\infty$$

е

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} \left(5 - x \right) = +\infty,$$

concluimos que o grafico de t nao possui assintotas horizontais. O grafico de t nao possui assintotas verticais, pois t é contínua em \mathbb{R} .



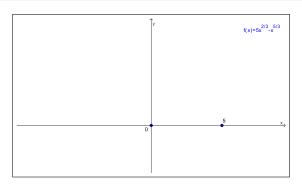
Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} (5 - x) = -\infty$$

е

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} (5 - x) = +\infty,$$

conclumos que o granco de r não possur assimotas nonzontais. O granco de r não possur assimotas verticais, pois f é contínua em \mathbb{R} .



Vamos determinar primeiro as assíntotas horizontais. Como

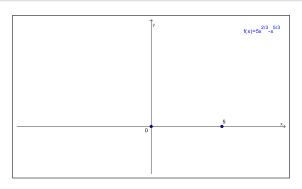
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} \left(5 - x \right) = -\infty$$

е

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} \left(5 - x \right) = +\infty,$$

verticais, pois f é contínua em \mathbb{R} .

4□ > 4圖 > 4 = > 4 = > = 900



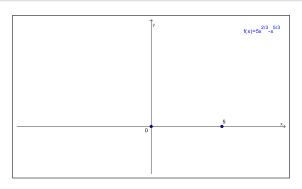
Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} (5 - x) = -\infty$$

е

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} (5 - x) = +\infty,$$

conclumos que o granco de r não possur assimotas nonzontais. O granco de r não possur assimotas verticais, pois f é contínua em \mathbb{R} .



Vamos determinar primeiro as assíntotas horizontais. Como

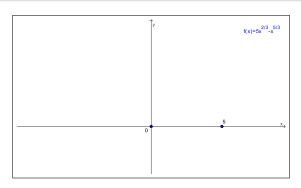
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} (5 - x) = -\infty$$

е

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} (5 - x) = +\infty$$

conclumos que o granco de r não possul assintotas nonzontais. O granco de r não possul assintotas verticais, pois f é contínua em \mathbb{R} .

◆□ > ◆□ > ◆ 注 > ・ 注 ・ か へ ②



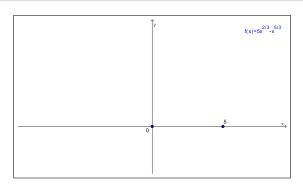
Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} (5 - x) = -\infty$$

е

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} \left(5 - x \right) = +\infty,$$

concluímos que o gráfico de f não possui assíntotas horizontais. O gráfico de f não possui assíntotas



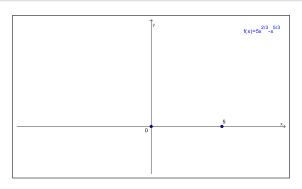
Vamos determinar primeiro as assíntotas horizontais. Como

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} (5 - x) = -\infty$$

е

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} \left(5 - x \right) = +\infty,$$

concluímos que o gráfico de f não possui assíntotas horizontais. O gráfico de f não possui assíntotas verticais, pois f a continua em \mathbb{R} .



Vamos determinar primeiro as assíntotas horizontais. Como

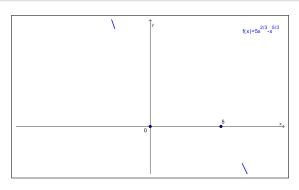
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} (5 - x) = -\infty$$

е

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} \left(5 - x \right) = +\infty,$$

concluímos que o gráfico de f não possui assíntotas horizontais. O gráfico de f não possui assíntotas verticais, pois f é contínua em \mathbb{R} .

40149147177 7 000



Vamos determinar primeiro as assíntotas horizontais. Como

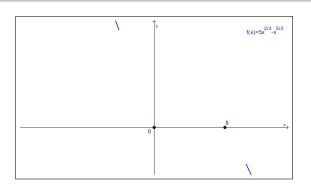
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to +\infty} x^{2/3} (5 - x) = -\infty$$

е

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(5 x^{2/3} - x^{5/3} \right) = \lim_{x \to -\infty} x^{2/3} \left(5 - x \right) = +\infty,$$

concluímos que o gráfico de f não possui assíntotas horizontais. O gráfico de f não possui assíntotas verticais, pois f é contínua em \mathbb{R} .

401491471717



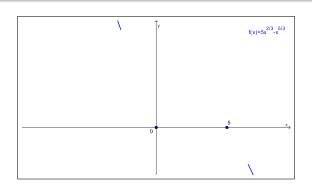
Note que

$$\frac{d}{dx}\left(x^{2/3}\right) = \frac{2}{3}x^{2/3-1} = \frac{2}{3}x^{-1/3} \quad \text{e} \qquad \frac{d}{dx}\left(x^{5/3}\right) = \frac{5}{3}x^{5/3-1} = \frac{5}{3}x^{2/3}.$$

Logo, f é derivável para todo $x \neq 0$, com

$$f'(x) = \frac{10}{3} x^{-1/3} - \frac{5}{3} x^{2/3} = \frac{5}{3} x^{-1/3} (2 - x).$$

E para x = 0?



Note que

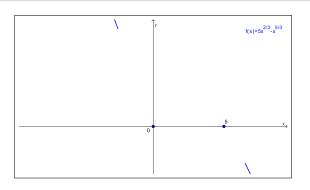
$$\frac{d}{dx}\left(x^{2/3}\right) = \frac{2}{3}x^{2/3-1} = \frac{2}{3}x^{-1/3} \quad \text{e} \qquad \frac{d}{dx}\left(x^{5/3}\right) = \frac{5}{3}x^{5/3-1} = \frac{5}{3}x^{2/3}.$$

Logo, f é derivável para todo $x \neq 0$, com

$$f'(x) = \frac{10}{3} x^{-1/3} - \frac{5}{3} x^{2/3} = \frac{5}{3} x^{-1/3} (2 - x).$$

E para x = 0?

↓□▶ ←□▶ ← □ ▶ ← □ ▶ ← □ ♥ へ○



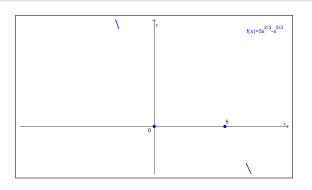
Note que

$$\frac{d}{dx}\left(x^{2/3}\right) = \frac{2}{3}x^{2/3-1} = \frac{2}{3}x^{-1/3} \qquad 0 \qquad \frac{d}{dx}\left(x^{5/3}\right) = \frac{5}{3}x^{5/3-1} = \frac{5}{3}x^{2/3}.$$

Logo, f é derivável para todo $x \neq 0$, com

$$f'(x) = \frac{10}{3} x^{-1/3} - \frac{5}{3} x^{2/3} = \frac{5}{3} x^{-1/3} (2 - x).$$

E para x = 0?



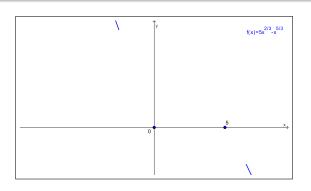
Note que

$$\frac{d}{dx}\left(x^{2/3}\right) = \frac{2}{3}x^{2/3-1} = \frac{2}{3}x^{-1/3} \qquad \qquad \frac{d}{dx}\left(x^{5/3}\right) = \frac{5}{3}x^{5/3-1} = \frac{5}{3}x^{2/3}.$$

Logo, f é derivável para todo $x \neq 0$, com

$$f'(x) = \frac{10}{3} x^{-1/3} - \frac{5}{3} x^{2/3} = \frac{5}{3} x^{-1/3} (2 - x)$$

E para x = 0?



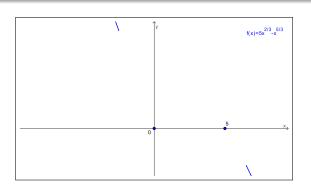
Note que

$$\frac{d}{dx}\left(x^{2/3}\right) = \frac{2}{3}x^{2/3 - 1} = \frac{2}{3}x^{-1/3} \qquad \qquad \frac{d}{dx}\left(x^{5/3}\right) = \frac{5}{3}x^{5/3 - 1} = \frac{5}{3}x^{2/3}$$

Logo, f é derivável para todo $x \neq 0$, com

$$f'(x) = \frac{10}{3}x^{-1/3} - \frac{5}{3}x^{2/3} = \frac{5}{3}x^{-1/3}(2-x).$$

E para x = 0?



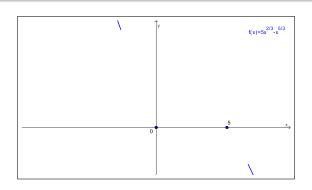
Note que

$$\frac{d}{dx}\left(x^{2/3}\right) = \frac{2}{3}x^{2/3-1} = \frac{2}{3}x^{-1/3} \quad \text{e} \qquad \frac{d}{dx}\left(x^{5/3}\right) = \frac{5}{3}x^{5/3-1} = \frac{5}{3}x^{3/3}$$

Logo, f é derivável para todo $x \neq 0$, com

$$f'(x) = \frac{10}{3}x^{-1/3} - \frac{5}{3}x^{2/3} = \frac{5}{3}x^{-1/3}(2-x).$$

E para x = 0?



Note que

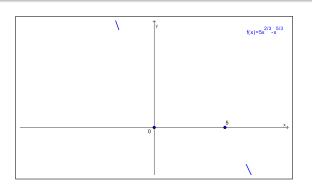
$$\frac{d}{dx}\left(x^{2/3}\right) = \frac{2}{3}x^{2/3-1} = \frac{2}{3}x^{-1/3} \quad \text{e} \qquad \frac{d}{dx}\left(x^{5/3}\right) = \frac{5}{3}x^{5/3-1} = \frac{5}{3}x^{2/3}.$$

Logo, f é derivável para todo $x \neq 0$, com

$$f'(x) = \frac{10}{3} x^{-1/3} - \frac{5}{3} x^{2/3} = \frac{5}{3} x^{-1/3} (2 - x)$$

E para x = 0?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 りゅ○



Note que

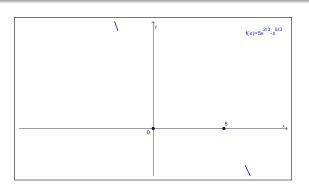
$$\frac{d}{dx}\left(x^{2/3}\right) = \frac{2}{3}x^{2/3-1} = \frac{2}{3}x^{-1/3} \quad \text{e} \qquad \frac{d}{dx}\left(x^{5/3}\right) = \frac{5}{3}x^{5/3-1} = \frac{5}{3}x^{2/3}.$$

Logo, f é derivável para todo $x \neq 0$, som

$$f'(x) = \frac{10}{3}x^{-1/3} - \frac{5}{3}x^{2/3} = \frac{5}{3}x^{-1/3}(2-x).$$

E para x = 0?

→□▶ ◆□▶ ◆注▶ ◆注▶ 注 りゅ○



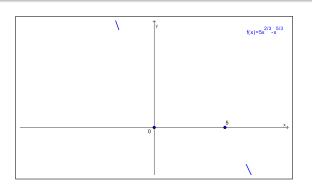
Note que

$$\frac{d}{dx}\left(x^{2/3}\right) = \frac{2}{3}x^{2/3-1} = \frac{2}{3}x^{-1/3} \quad \text{e} \qquad \frac{d}{dx}\left(x^{5/3}\right) = \frac{5}{3}x^{5/3-1} = \frac{5}{3}x^{2/3}.$$

Logo, f é derivável para todo $x \neq 0$, com

$$f'(x) = \frac{10}{3} x^{-1/3} - \frac{5}{3} x^{2/3} = \frac{5}{3} x^{-1/3} (2 - x).$$

E para x = 0?



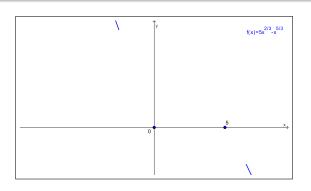
Note que

$$\frac{d}{dx}\left(x^{2/3}\right) = \frac{2}{3}x^{2/3-1} = \frac{2}{3}x^{-1/3} \quad \text{e} \qquad \frac{d}{dx}\left(x^{5/3}\right) = \frac{5}{3}x^{5/3-1} = \frac{5}{3}x^{2/3}.$$

Logo, f é derivável para todo $x \neq 0$, com

$$f'(x) = \frac{10}{3} x^{-1/3} - \frac{5}{3} x^{2/3} = \frac{5}{3} x^{-1/3} (2 - x).$$

E para x = 0?



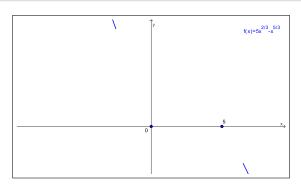
Note que

$$\frac{d}{dx}\left(x^{2/3}\right) = \frac{2}{3}x^{2/3-1} = \frac{2}{3}x^{-1/3} \quad \text{e} \qquad \frac{d}{dx}\left(x^{5/3}\right) = \frac{5}{3}x^{5/3-1} = \frac{5}{3}x^{2/3}.$$

Logo, f é derivável para todo $x \neq 0$, com

$$f'(x) = \frac{10}{3}x^{-1/3} - \frac{5}{3}x^{2/3} = \frac{5}{3}x^{-1/3}(2-x).$$

E para x = 0?

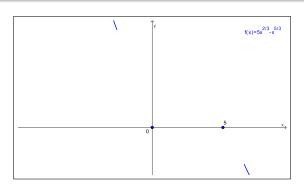


Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3}(5 - x) = +\infty,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{8/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

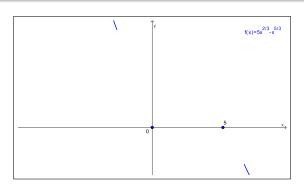


Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5x^{2/3} - x^{8/3}}{x - 0} = \lim_{x \to 0^{+}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3}(5 - x) = +\infty,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5x^{2/3} - x^{3/3}}{x - 0} = \lim_{x \to 0^{-}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

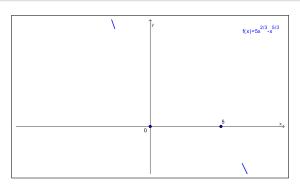


Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = +\infty,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5x^{2/3} - x^{3/3}}{x - 0} = \lim_{x \to 0^{-}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.



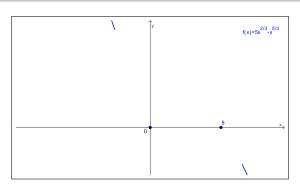
Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = +\infty,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5x^{2/3} - x^{2/3}}{x - 0} = \lim_{x \to 0^{-}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

128



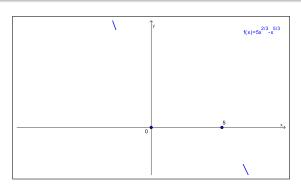
Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = +\infty,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{3x^{2/3} - x^{2/3}}{x - 0} = \lim_{x \to 0^{-}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

129

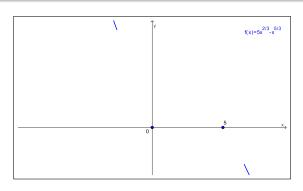


Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = +\infty,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{3x^{2/3} - x^{2/3}}{x - 0} = \lim_{x \to 0^{-}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.



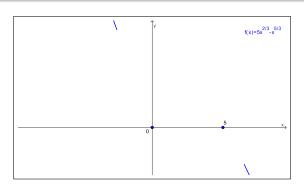
Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3}(5 - x) = 0$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5x^{2/3} - x^{2/3}}{x - 0} = \lim_{x \to 0^{-}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

(□) (□) (□) (□) (□) (□) (□)



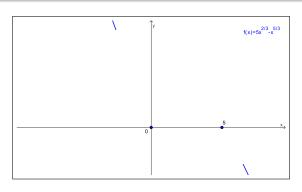
Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = +\infty$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5x^{2/3} - x^{2/3}}{x - 0} = \lim_{x \to 0^{-}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

4□ > 4□ > 4 = > 4 = > = 90



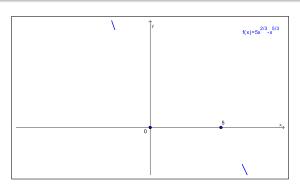
Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3}(5 - x) = +\infty,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

4□ > 4□ > 4 = > 4 = > = 90

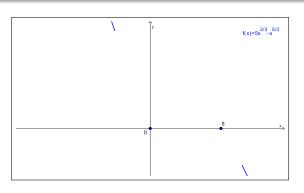


Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3}(5 - x) = +\infty,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3}(5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

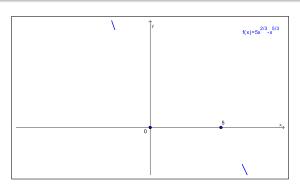


Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = + \infty,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0

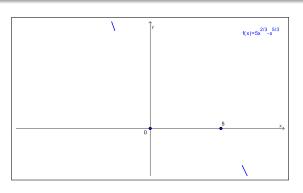


Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = + \infty,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = - \infty.$$

Logo, f não é derivável em x = 0

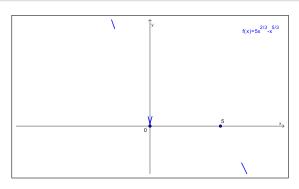


Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = + \infty,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = - \infty.$$

Logo, f não é derivável em x = 0.

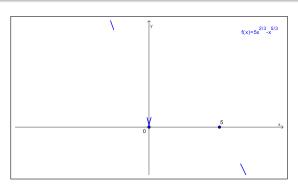


Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = + \infty$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

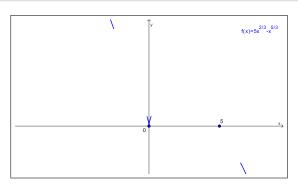


Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = + \infty$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.



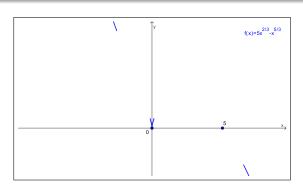
Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = + \infty$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

<□▶<□▶<≣▶<≣▶ = 900



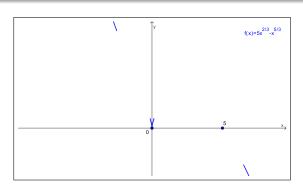
Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = + \infty$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

4□ > 4□ > 4 = > 4 = > = 90

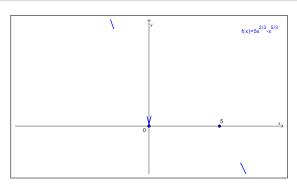


Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = + \infty$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.



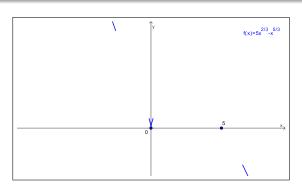
Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = + \infty$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = - \infty.$$

Logo, f não é derivável em x = 0.

<ロ > < 回 > < 巨 > < 巨 > く 巨 > ・ 豆 ・ り へ ⊙



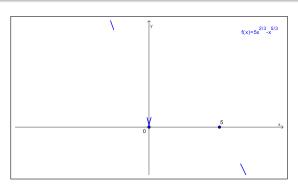
Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = + \infty$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

(5) Pontos onde a função não é derivável



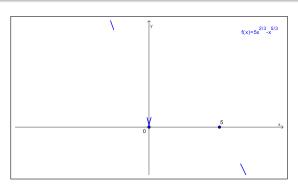
Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = + \infty$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = -\infty.$$

Logo, f não é derivável em x = 0.

(5) Pontos onde a função não é derivável

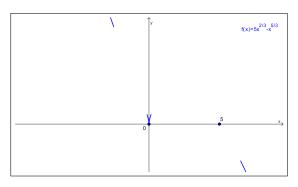


Para x = 0, note que

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{+}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{+}} x^{-1/3} (5 - x) = + \infty,$$

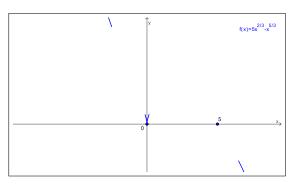
$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{5 x^{2/3} - x^{5/3}}{x - 0} = \lim_{x \to 0^{-}} (5 x^{-1/3} - x^{2/3}) = \lim_{x \to 0^{-}} x^{-1/3} (5 - x) = - \infty.$$

Logo, f não é derivável em x = 0.



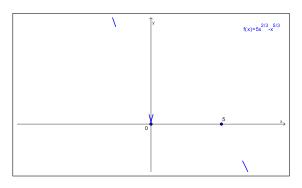
Temos que $f'(x) = (5/3) x^{-1/3} (2-x)$ O estudo do sinal da derivada nos dá

Assim, f é decrescente no intervalo $(-\infty,0)$, f é crescente em (0,2) e f é decrescente em $(2,+\infty)$

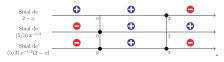


Temos que $f'(x) = (5/3) x^{-1/3} (2 - x)$ O estudo do sinal da derivada nos dá

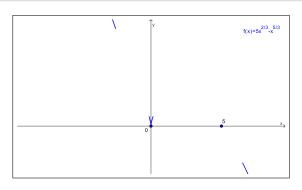
Assim, f é decrescente no intervalo $(-\infty,0)$, f é crescente em (0,2) e f é decrescente em $(2,+\infty)$



Temos que $f'(x) = (5/3) x^{-1/3} (2 - x)$ O estudo do sinal da derivada nos dá

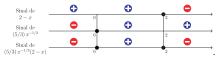


Assim, f é decrescente no intervalo $(-\infty,0)$, f é crescente em (0,2) e f é decrescente em $(2,+\infty)$

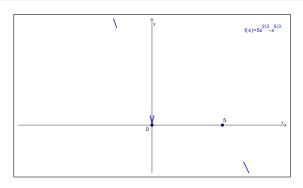


Temos que $f'(x) = (5/3) x^{-1/3} (2 - x)$. O estudo do sinal da derivada nos dá

Aula 24

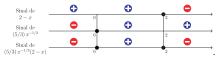


Assim, f é decrescente no intervalo $(-\infty,0)$ f é crescente em (0,2) e f é decrescente em $(2,+\infty)$.

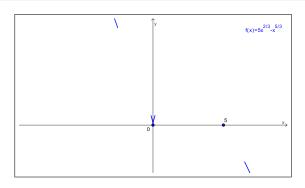


Temos que $f'(x) = (5/3) x^{-1/3} (2 - x)$. O estudo do sinal da derivada nos dá

Aula 24

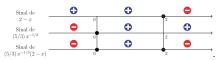


Assim, f é decrescente no intervalo $(-\infty,0)$, f é crescente em (0,2) e f é decrescente em $(2,+\infty)$.

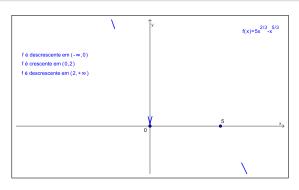


Temos que $f'(x) = (5/3) x^{-1/3} (2 - x)$. O estudo do sinal da derivada nos dá

Aula 24

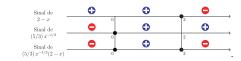


Assim, f é decrescente no intervalo $(-\infty,0)$, f é crescente em (0,2) e f é decrescente em $(2,+\infty)$.

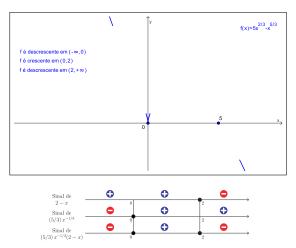


Temos que $f'(x) = (5/3) x^{-1/3} (2 - x)$. O estudo do sinal da derivada nos dá

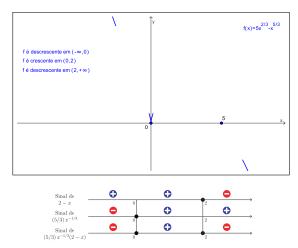
Aula 24



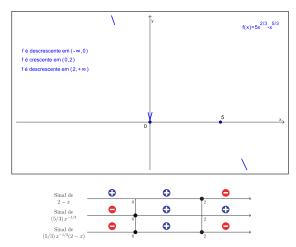
Assim, f é decrescente no intervalo $(-\infty,0)$, f é crescente em (0,2) e f é decrescente em $(2,+\infty)$.



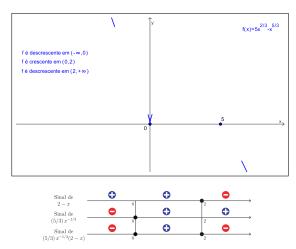
Vimos no item anterior que o único ponto crítico de f é p=2. Como, em p=2, o sinal da derivada muda de + para -, concluímos pelo teste da derivada primeira que p=2 é ponto de máximo local de f em D. O ponto p=0 (onde f não é derivável) é ponto de mínimo local de f em D.



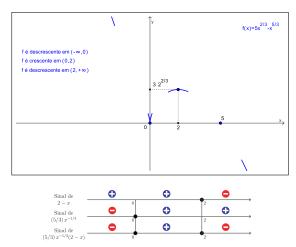
Vimos no item anterior que o único ponto crítico de f é p=2. Como, em p=2, o sinal da derivada muda de + para - conclumos pelo leste da derivada primeira que p=2 a ponto de máximo local de f em D. O ponto p=0 (onde f had a derivavel a ponto de mínimo local de f em D



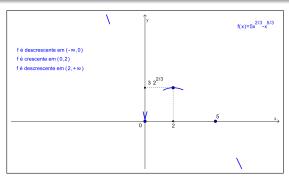
Vimos no item anterior que o único ponto crítico de f é p=2. Como, em p=2, o sinal da derivada muda de + para -, concluímos pelo teste da derivada primeira que p=2 é ponto de máximo local de f em D.



Vimos no item anterior que o único ponto crítico de f é p=2. Como, em p=2, o sinal da derivada muda de + para -, concluímos pelo teste da derivada primeira que p=2 é ponto de máximo local de f em D. O ponto p=0 (onde f não é derivável) é ponto de mínimo local de f em D.



Vimos no item anterior que o único ponto crítico de f é p=2. Como, em p=2, o sinal da derivada muda de + para -, concluímos pelo teste da derivada primeira que p=2 é ponto de máximo local de f em D. O ponto p=0 (onde f não é derivável) é ponto de mínimo local de f em D.

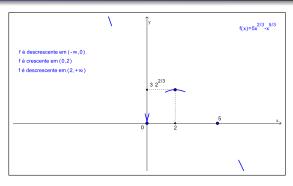


Como
$$f'(x) = (10/3) x^{-1/3} - (5/3) x^{2/3}$$
, segue-se que $f''(x) = -(10/9) x^{-4/3} - (10/9) x^{-1/3}$, ou ainda, $f''(x) = -(10/3) x^{-4/3} (1 + x)$. O estudo do sinal da derivada nos dá

Assim, f é côncava para cima no intervalo $(-\infty, -1)$, f é côncava para baixo em (-1, 0) e em $(0, +\infty)$. Note que p = 0 é o único ponto de inflexão do gráfico de f.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣ぬの

159

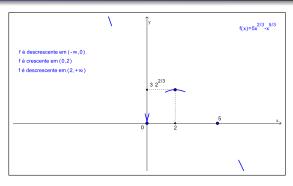


Como $f'(x) = (10/3)x^{-1/3} - (5/3)x^{2/3}$, segue-se que $f''(x) = -(10/9)x^{-4/3} - (10/9)x^{-1/3}$, ou ainda, $f''(x) = -(10/3)x^{-4/3} - (10/9)x^{-1/3}$. O estudo do sinal da derivada nos dá

Assim, f é côncava para cima no intervalo $(-\infty, -1)$, f é côncava para baixo em (-1, 0) e em $(0, +\infty)$. Note que p = 0 é o único ponto de inflexão do gráfico de f.

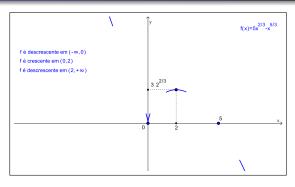
←□ → ←□ → ←필 → ←필 → □ → ○ ○

160



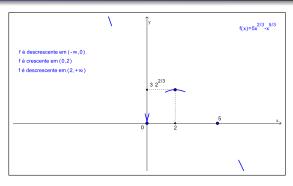
Como
$$f'(x) = (10/3) x^{-1/3} - (5/3) x^{2/3}$$
, segue-se que $f''(x) = -(10/9) x^{-4/3} - (10/9) x^{-1/3}$, ou ainda $f'(x) = -(10/3) x^{-1/3} - (10/9) x^{-1/3}$. Ou ainda derivada nos da

Assim, f é côncava para cima no intervalo $(-\infty, -1)$, f é côncava para baixo em (-1, 0) e em $(0, +\infty)$. Note que p = 0 é o único ponto de inflexão do gráfico de f.



Como
$$f'(x) = (10/3) x^{-1/3} - (5/3) x^{2/3}$$
, segue-se que $f''(x) = -(10/9) x^{-4/3} - (10/9) x^{-1/3}$, ou ainda,

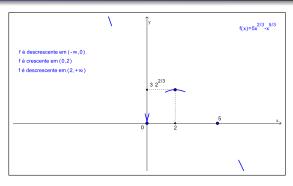
Assim, f é côncava para cima no intervalo $(-\infty, -1)$, f é côncava para baixo em (-1, 0) e em $(0, +\infty)$. Note que p = 0 é o único ponto de inflexão do gráfico de f.



Como
$$f'(x) = (10/3) x^{-1/3} - (5/3) x^{2/3}$$
, segue-se que $f''(x) = -(10/9) x^{-4/3} - (10/9) x^{-1/3}$, ou ainda, $f''(x) = -(10/3) x^{-4/3} (1+x)$. \bigcirc estudo do sinal da derivada nos da

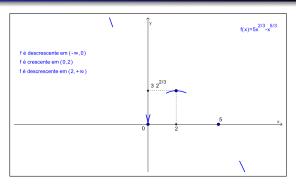
Assim, f é côncava para cima no intervalo $(-\infty, -1)$, f é côncava para baixo em (-1, 0) e em $(0, +\infty)$. Note que p = 0 é o único ponto de inflexão do gráfico de f.

4 L P 4 EP 4 E P 4

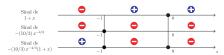


Como
$$f'(x)=(10/3)\,x^{-1/3}-(5/3)\,x^{2/3}$$
, segue-se que $f''(x)=-(10/9)\,x^{-4/3}-(10/9)\,x^{-1/3}$, ou ainda, $f''(x)=-(10/3)\,x^{-4/3}(1+x)$. O estudo do sinal da derivada nos dá

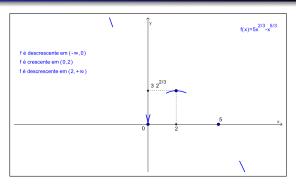
Assim, f é côncava para cima no intervalo $(-\infty, -1)$, f é côncava para baixo em (-1, 0) e em $(0, +\infty)$. Note que p = 0 é o único ponto de inflexão do gráfico de f.



Como $f'(x)=(10/3)\,x^{-1/3}-(5/3)\,x^{2/3}$, segue-se que $f''(x)=-(10/9)\,x^{-4/3}-(10/9)\,x^{-1/3}$, ou ainda, $f''(x)=-(10/3)\,x^{-4/3}(1+x)$. O estudo do sinal da derivada nos dá

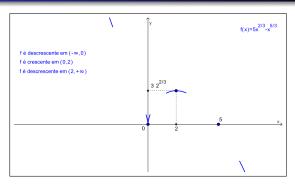


Assim, f é côncava para cima no intervalo $(-\infty, -1)$, f é côncava para baixo em (-1, 0) e em $(0, +\infty)$. Note que p = 0 é o único ponto de inflexão do gráfico de f.



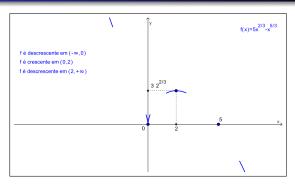
Como $f'(x)=(10/3)\,x^{-1/3}-(5/3)\,x^{2/3}$, segue-se que $f''(x)=-(10/9)\,x^{-4/3}-(10/9)\,x^{-1/3}$, ou ainda, $f''(x)=-(10/3)\,x^{-4/3}(1+x)$. O estudo do sinal da derivada nos dá

Assim, f é côncava para cima no intervalo $(-\infty, -1)$, f é côncava para baixo em (-1, 0) e em $(0, +\infty)$. Note que $\rho = 0$ e o unico ponto de inflexão do gráfico de f.

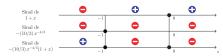


Como $f'(x)=(10/3)\,x^{-1/3}-(5/3)\,x^{2/3}$, segue-se que $f''(x)=-(10/9)\,x^{-4/3}-(10/9)\,x^{-1/3}$, ou ainda, $f''(x)=-(10/3)\,x^{-4/3}(1+x)$. O estudo do sinal da derivada nos dá

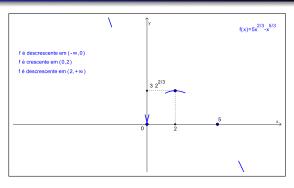
Assim, f é côncava para cima no intervalo $(-\infty, -1)$, f é côncava para baixo em (-1, 0) em $(0, +\infty)$. Note que p = 0 e o unico ponto de inflexão do gráfico de f



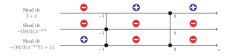
Como $f'(x)=(10/3)\,x^{-1/3}-(5/3)\,x^{2/3}$, segue-se que $f''(x)=-(10/9)\,x^{-4/3}-(10/9)\,x^{-1/3}$, ou ainda, $f''(x)=-(10/3)\,x^{-4/3}(1+x)$. O estudo do sinal da derivada nos dá



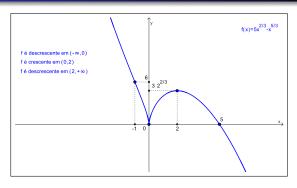
Assim, f é côncava para cima no intervalo $(-\infty, -1)$, f é côncava para baixo em (-1, 0) e em $(0, +\infty)$.



Como $f'(x)=(10/3)\,x^{-1/3}-(5/3)\,x^{2/3}$, segue-se que $f''(x)=-(10/9)\,x^{-4/3}-(10/9)\,x^{-1/3}$, ou ainda, $f''(x)=-(10/3)\,x^{-4/3}(1+x)$. O estudo do sinal da derivada nos dá



Assim, f é côncava para cima no intervalo $(-\infty, -1)$, f é côncava para baixo em (-1, 0) e em $(0, +\infty)$. Note que p = 0 é o único ponto de inflexão do gráfico de f.



Como $f'(x)=(10/3)\,x^{-1/3}-(5/3)\,x^{2/3}$, segue-se que $f''(x)=-(10/9)\,x^{-4/3}-(10/9)\,x^{-1/3}$, ou ainda, $f''(x)=-(10/3)\,x^{-4/3}(1+x)$. O estudo do sinal da derivada nos dá

Assim, f é côncava para cima no intervalo $(-\infty, -1)$, f é côncava para baixo em (-1, 0) e em $(0, +\infty)$. Note que p = 0 é o único ponto de inflexão do gráfico de f.

