

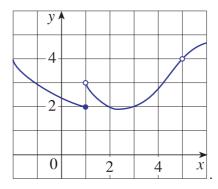
LISTA DE EXERCÍCIOS

Cálculo I -A-

Humberto José Bortolossi http://www.professores.uff.br/hjbortol/

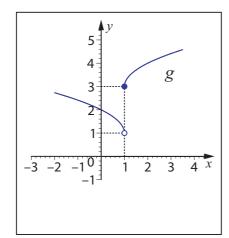
Limites e limites laterais

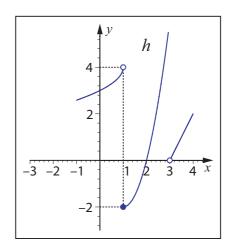
- [01] Para a função f cujo gráfico é dado, determine o valor da quantidade indicada, se ela existir. Se não existir, explique por quê.
 - (a) $\lim_{x\to 1^-} f(x)$, (b) $\lim_{x\to 1^+} f(x)$, (c) $\lim_{x\to 1} f(x)$, (d) $\lim_{x\to 5} f(x)$.



- [02] Para a função g cujo gráfico é dado, determine o valor da quantidade indicada, se ela existir. Se não existir, explique por quê.
 - (a) $\lim_{t\to 0^-} g(t)$,
- (b) $\lim_{t\to 0^+} g(t)$,
- (c) $\lim_{t\to 0} g(t)$,
- (d) $\lim_{t\to 2^{-}} g(t)$,

- (e) $\lim_{t\to 2^+} g(t)$,
- (f) $\lim_{t\to 2} g(t)$,
- (g) $\lim_{t\to 4} g(t)$.
- y i 4 2 t 4
- [03] Esboce o gráfico de uma função f que satisfaz as seguintes condições: $\lim_{x\to 3^+} f(x) = 4$, $\lim_{x\to 3^-} f(x) = 2$, $\lim_{x\to -2} f(x) = 2$, f(3) = 3 e f(-2) = 1.
- [04] Os gráficos de g e h são dados na figura a seguir. Ache os limites laterais de $f(x) = (h \circ g)(x)$ no ponto x = 1.

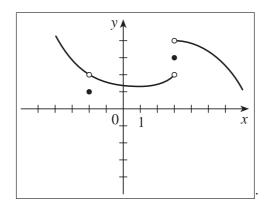




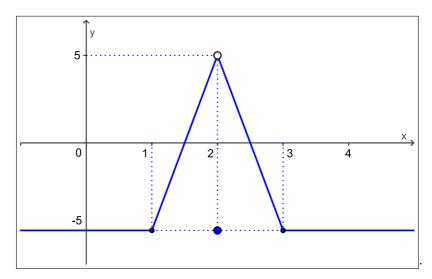
- [05] Dê um exemplo no qual $\lim_{x\to 0} |f(x)|$ existe, mas $\lim_{x\to 0} f(x)$ não existe.
- [06] Seja $f: \mathbb{R} \to \mathbb{R}$ uma função tal que f(x) > 0 para todo $x \neq 2$ e f(2) = -3. Verifique se as afirmativas abaixo são verdadeiras ou falsas. Caso seja verdadeira, apresente uma justificativa. Caso seja falsa, apresente um contra-exemplo.
 - (a) $\lim_{x\to 2} f(x)$ não existe.
- (b) $\lim_{x\to 2} f(x) = -3$. (c) Se existir, $\lim_{x\to 2} f(x)$ é positivo.
- [07] Sabe-se que $\lim_{x\to 2} f(x) = 5$ e f é definida em \mathbb{R} . Todas as afirmativas abaixo são falsas. Tente desenhar um contra-exemplo para cada uma delas.
 - (a) f(x) > 0 para $x \in (1,3)$.
- (b) f(2) = 5.
- (c) f(2) é positivo.
- [08] Para cada uma das funções abaixo, calcule os limites $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}$ e $\lim_{h\to 0} \frac{f(1+h)-f(1)}{h}$.
 - (a) $f(x) = x^2$,
- (b) $f(x) = x^3$,
- (c) $f(x) = \sqrt{x}$,

Respostas dos Exercícios

- [01] (a) 2, (b) 3, (c) não existe, pois os limites laterais $\lim_{x\to 1^-} f(x)$ e $\lim_{x\to 1^+} f(x)$ são diferentes, (d) 4.
- [02] (a) -1, (b) -2, (c) não existe, pois os limites laterais $\lim_{t\to 0^-} g(t)$ e $\lim_{t\to 0^+} g(t)$ são diferentes, (d) 2, (e) 0, (f) não existe, pois os limites laterais $\lim_{t\to 2^-} g(t)$ e $\lim_{t\to 2^+} g(t)$ são diferentes, (g) 3.
- [03] O esboço do gráfico de f é dado na figura a seguir.



- [04] $\lim_{x\to 1^-} f(x) = -2 \text{ e } \lim_{x\to 1^+} f(x) = 0.$
- [05] $f(x) = \frac{x}{|x|} = \begin{cases} -1, & \text{se } x < 0, \\ +1, & \text{se } x > 0. \end{cases}$
- [06] Todas as sentenças são falsas. A função $f(x) = \begin{cases} |x-2|, & \text{se } x \neq 2, \\ -3, & \text{se } x = 2, \end{cases}$ é um contra-exemplo que serve para as três afirmativas.
- $\left[07\right]$ A função cujo gráfico é dado a seguir é um contra-exemplo que serve para as três afirmativas.



[08] (a) Os dois limites são iguais a 2. (b) Os dois limites são iguais a 3. (c) Os dois limites são iguais a 1/2. (d) Os dois limites são iguais a -1.

3

Texto composto em I₄TEX2e, HJB, 31/03/2009.