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THEOREM 2

Proof

4.2 The LU and Cholesky Factorizations 133

for the quantities u,; with 1 £ s < k — 1. These elements lie in the kth column of
U. Since Ui, is nonsingular, we can solve the system

k—1
Y s, =ay (1Si<k-1)
=1

for £xs with 1 £ s £ k — 1. These elements lie in the kth row of L. From the
requirement

k k-1
Qe = kasusk = kas‘usk + Crrukr
g=1 =1

we can obtain ugy since £r;x has been specified as unity. Thus, all the new elements
necessary to form Ly and U have been defined. The induction is completed by noting
that 1,111 = a;; and, therefore, £,; =1 and u;; = a;. [ ]

Cholesky Factorization

As mentioned earlier in this section, a matrix factorization that is useful in some
situations has been given the name of the mathematician André Louis Cholesky, who
proved the following resuli:

If A is a real, symmetric, and positive definite matrix, then it has a unique factorization,
A= LLY, in which L is lower triangular with a positive diagonal.

Recall that a matrix A is symmetric and positive definite if A = AT and zTAz > 0
for every nonzero vector z. It follows at once that A is nonsingular, for A obviously
cannot map any nonzero vector into zero. Moreover, by considering special vectors of
the form z = (z,T3....,%x.0,0,...,0)7, we see that the leading principal minors
of A are also positive definite. Theorem 1 implies that A has an LU decomposition.
By the symmetry of A, we then have

LWW=A=AT =07
This implies that
U(LT)~—1 =" 1pT

The left member of this equation is upper triangular, while the right member is lower
triangular. (See Problem 1.) Consequently, there is a diagonal mairix D such that
U(LTY™! = D. Hence, U = DLT and A = LDLT. By Problem 27, D is positive
definite, and thus its elements d,, are positive. Denoling by D!/? the diagonal matrix
whose diagonal elements are \/d,,, we have A = LLT where L = LDY/2_ which is
the Cholesky factorization. The proof of uniqueness is left as a problem. |

The algorithm for the Cholesky factorization is a special case of the general
LU -faciorization algorithm. K A is real, symmetric, and positive definite then by
Theorem 2 it has a unique factorization of the form A = LLT, in which L is lower

- trjangular and has positive diagonal. Thus, in Equation (8), U = L7 In the kth step

of the general algonithm, the diagonal entry is computed by

k=1 | 1/2
Pk = (alck - Zgis) (13)
=1



