Chapter 8.  Sorting

8.0 Introduction

This chapter almost doesn’'t belong in abook on numerical methods. However,
some practical knowledge of techniques for sorting is an indispensable part of any
good programmer’s expertise. We would not want you to consider yourself expert in
numerical techniques while remaining ignorant of so basic a subject.

In conjunction with numerical work, sorting is frequently necessary when data
(either experimental or numerically generated) are being handled. One has tables
or lists of numbers, representing one or more independent (or “control”) variables,
and one or more dependent (or “measured”) variables. One may wish to arrange
these data, in various circumstances, in order by one or another of these variables.
Alternatively, one may simply wish to identify the “median” value, or the “upper
quartile” value of one of the lists of values. This task, closely related to sorting,
is called selection.

Here, more specifically, are the tasks that this chapter will deal with:

e Sort, i.e., rearrange, an array of numbers into numerical order.

e Rearrange an array into numerical order while performing the corre-
sponding rearrangement of one or more additiona arrays, so that the
correspondence between elementsin all arrays is maintained.

e Given an array, prepare an index table for it, i.e, a table of pointers
telling which number array element comes first in numerical order, which
second, and so on.

e Given an array, prepare a rank table for it, i.e.,, atable telling what is
the numerical rank of the first array element, the second array element,
and so on.

e Sdlect the Mth largest element from an array.

For the basic task of sorting N elements, the best agorithms require on the
order of several times NV log, NV operations. The algorithm inventor tries to reduce
the constant in front of this estimate to as small a value as possible. Two of the
best algorithms are Quicksort (§8.2), invented by the inimitable C.A.R. Hoare, and
Heapsort (§8.3), invented by JW.J. Williams.

For large N (say > 1000), Quicksort isfaster, on most machines, by afactor of
1.5or 2; it requires a bit of extramemory, however, and isamoderately complicated
program. Hespsort is a true “sort in place,” and is somewhat more compact to
program and therefore a bit easier to modify for specia purposes. On baance, we
recommend Quicksort because of its speed, but we implement both routines.

329

SINOYQD 10 ‘sanaysip ‘sy00q sadioay [eauswny Japio o] ‘panugiyosd Apouis si ‘1aindwod Janias Aue 03 (suo siyy Buipnjour) saji ajgepeal
‘alemyos sadipay [eauswnN Aq z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Aq z66T-886T (D) WbuUAdoD
(G-80TEY-T2S-0 NESI) ONILNAINOD DIHILNIIOS 4O LUV JHL D NI SIdIOTY TvIIYINNN wouy abed sjdwes

‘(eolBWY YLION 8pISINo) 3N oe wed dnd@ape) 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £27/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axeWw 0} SIasn 1duIBIUI 10} pajueId SI UoISSIWISd



330 Chapter 8.  Sorting

For small N one does better to use an agorithm whose operation count goes
as a higher, i.e., poorer, power of N, if the constant in front is small enough. For
N < 20, roughly, the method of straight insertion (§8.1) is concise and fast enough.
We include it with some trepidation: It is an N2 agorithm, whose potential for
misuse (by using it for too large an N) is great. The resultant waste of computer
time is so avesome, that we were tempted not to include any N2 routine at all. We
will draw the ling, however, at the inefficient N2 algorithm, beloved of e ementary
computer science texts, called bubble sort. If you know what bubble sort is, wipe it
from your mind; if you don’t know, make a point of never finding out!

For N < 50, roughly, Shell’smethod (§8.1), only slightly more complicated to
program than straight insertion, is competitive with the more complicated Quicksort
on many machines. Thismethod goesas N3/2 intheworst case, butisusually faster.

See references(1,2] for further information on the subject of sorting, and for
detailed references to the literature.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley). [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapters 8-13. [2]

8.1 Straight Insertion and Shell’s Method

Straight insertion is an N2 routine, and should be used only for small N,
sy < 20.

The technique is exactly the one used by experienced card players to sort their
cards: Pick out the second card and put it in order with respect to thefirst; then pick
out the third card and insert it into the sequence among thefirst two; and so on until
the last card has been picked out and inserted.

void piksrt(int n, float arr[])
Sorts an array arr [1. .n] into ascending numerical order, by straight insertion. n is input; arr
is replaced on output by its sorted rearrangement.

{
int i,j;
float a;
for (j=2;j<=n;j++) { Pick out each element in turn.
a=arr[j];
i=j-1;
while (i > 0 && arr[i] > a) { Look for the place to insert it.
arr[i+1]=arr[i];
i--;
}
arr[i+1]=a; Insert it.
}
}

What if you also want to rearrange an array brr at the same time as you sort
arr? Simply move an element of brr whenever you move an e ement of arr:

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



330 Chapter 8.  Sorting

For small N one does better to use an agorithm whose operation count goes
as a higher, i.e., poorer, power of N, if the constant in front is small enough. For
N < 20, roughly, the method of straight insertion (§8.1) is concise and fast enough.
We include it with some trepidation: It is an N2 agorithm, whose potential for
misuse (by using it for too large an N) is great. The resultant waste of computer
time is so avesome, that we were tempted not to include any N2 routine at all. We
will draw the ling, however, at the inefficient N2 algorithm, beloved of e ementary
computer science texts, called bubble sort. If you know what bubble sort is, wipe it
from your mind; if you don’t know, make a point of never finding out!

For N < 50, roughly, Shell’smethod (§8.1), only slightly more complicated to
program than straight insertion, is competitive with the more complicated Quicksort
on many machines. Thismethod goesas N3/2 intheworst case, butisusually faster.

See references(1,2] for further information on the subject of sorting, and for
detailed references to the literature.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley). [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapters 8-13. [2]

8.1 Straight Insertion and Shell’s Method

Straight insertion is an N2 routine, and should be used only for small N,
sy < 20.

The technique is exactly the one used by experienced card players to sort their
cards: Pick out the second card and put it in order with respect to thefirst; then pick
out the third card and insert it into the sequence among thefirst two; and so on until
the last card has been picked out and inserted.

void piksrt(int n, float arr[])
Sorts an array arr [1. .n] into ascending numerical order, by straight insertion. n is input; arr
is replaced on output by its sorted rearrangement.

{
int i,j;
float a;
for (j=2;j<=n;j++) { Pick out each element in turn.
a=arr[j];
i=j-1;
while (i > 0 && arr[i] > a) { Look for the place to insert it.
arr[i+1]=arr[i];
i--;
}
arr[i+1]=a; Insert it.
}
}

What if you also want to rearrange an array brr at the same time as you sort
arr? Simply move an element of brr whenever you move an e ement of arr:

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



8.1 Straight Insertion and Shell'’s Method 331

void piksr2(int n, float arr[], float brr[])
Sorts an array arr[1..n] into ascending numerical order, by straight insertion, while making
the corresponding rearrangement of the array brr[1..n].
{
int i,j;
float a,b;

for (j=2;j<=n;j++) { Pick out each element in turn.

a=arr[j];

b=brr[jl;

i=j-1;

while (i > 0 && arr[i] > a) { Look for the place to insert it.
arr[i+1]=arr[i];
brr[i+1]=brr[i];
i-—;

}

arr[i+1]=a; Insert it.

brr[i+1]=b;

For the case of rearranging a larger number of arrays by sorting on one of
them, see §8.4.

Shell’s Method

Thisisactually avariant on straight insertion, but avery powerful variant indeed.
Theroughidea, eg., for the case of sorting 16 numbersn; .. .n1g, isthis: First sort,
by straight insertion, each of the 8 groups of 2 (n1, ng), (n2,n10), --., (N8, N16).
Next, sort each of the 4 groups of 4 (n1, ns, ng, n13), - - ., (N4, ng, n12,n16). Next
sort the 2 groups of 8 records, beginning with (n1, ns, ns, n7, ng, n11, n13, N15).
Finally, sort the whole list of 16 numbers.

Of course, only the last sort is necessary for putting the numbers into order. So
what is the purpose of the previous partial sorts? The answer is that the previous
sorts allow numbers efficiently to filter up or down to positions close to their final
resting places. Therefore, the straight insertion passes on thefina sort rarely have to
go past more than a“few” elements before finding theright place. (Think of sorting
a hand of cards that are already amost in order.)

The spacings between the numbers sorted on each pass throughthe data (8,4,2,1
in the above example) are called the increments, and a Shell sort is sometimes
caled a diminishing increment sort. There has been a lot of research into how to
choose a good set of increments, but the optimum choice is not known. The set
...,8,4,2 1isin fact not a good choice, especialy for N a power of 2. A much
better choice is the sequence

(3% —1)/2,...,40,13,4,1 (8.1.1)
which can be generated by the recurrence
i1 =1, g1 =3 +1, k=12, ... (812)

It can be shown (see[1]) that for thisseguence of incrementsthe number of operations
required in all is of order N3/ for the worst possible ordering of the original data.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes



332 Chapter 8.  Sorting

For “randomly” ordered data, the operations count goes approximately as N!'-2°, at
least for N < 60000. For N > 50, however, Quicksort is generally faster. The
program follows:

void shell(unsigned long n, float all)
Sorts an array a[1. .n] into ascending numerical order by Shell's method (diminishing increment
sort). n is input; a is replaced on output by its sorted rearrangement.
{
unsigned long i, j,inc;
float v;
inc=1; Determine the starting increment.
do {
inc *= 3;
inc++;
} while (inc <= n);
do { Loop over the partial sorts.
inc /= 3;
for (i=inc+1;i<=n;i++) { Outer loop of straight insertion.
v=alil;
j=i;
while (a[j-inc] > v) { Inner loop of straight insertion.
aljl=alj-inc];
j —= inc;
if (j <= inc) break;

aljl=v;

}
} while (inc > 1);

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.1. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 8.

8.2 Quicksort

Quicksort is, on most machines, on average, for large N, the fastest known
sorting algorithm. It is a “partition-exchange” sorting method: A “partitioning
element” a is selected from the array. Then by pairwise exchanges of elements, the
original array is partitioned into two subarrays. At theend of around of partitioning,
thedement a isinitsfina placein the array. All elementsin the left subarray are
< a, while all elements in the right subarray are > a. The processis then repeated
on the left and right subarrays independently, and so on.

The partitioning process is carried out by selecting some element, say the
leftmost, as the partitioning element a. Scan a pointer up the array until you find
an element > a, and then scan another pointer down from the end of the array
until you find an element < a. These two elements are clearly out of place for the
final partitioned array, so exchange them. Continue this process until the pointers
cross. Thisistheright place to insert a, and that round of partitioningis done. The

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



332 Chapter 8.  Sorting

For “randomly” ordered data, the operations count goes approximately as N!'-2°, at
least for N < 60000. For N > 50, however, Quicksort is generally faster. The
program follows:

void shell(unsigned long n, float all)
Sorts an array a[1. .n] into ascending numerical order by Shell's method (diminishing increment
sort). n is input; a is replaced on output by its sorted rearrangement.
{
unsigned long i, j,inc;
float v;
inc=1; Determine the starting increment.
do {
inc *= 3;
inc++;
} while (inc <= n);
do { Loop over the partial sorts.
inc /= 3;
for (i=inc+1;i<=n;i++) { Outer loop of straight insertion.
v=alil;
j=i;
while (a[j-inc] > v) { Inner loop of straight insertion.
aljl=alj-inc];
j —= inc;
if (j <= inc) break;

aljl=v;

}
} while (inc > 1);

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.1. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 8.

8.2 Quicksort

Quicksort is, on most machines, on average, for large N, the fastest known
sorting algorithm. It is a “partition-exchange” sorting method: A “partitioning
element” a is selected from the array. Then by pairwise exchanges of elements, the
original array is partitioned into two subarrays. At theend of around of partitioning,
thedement a isinitsfina placein the array. All elementsin the left subarray are
< a, while all elements in the right subarray are > a. The processis then repeated
on the left and right subarrays independently, and so on.

The partitioning process is carried out by selecting some element, say the
leftmost, as the partitioning element a. Scan a pointer up the array until you find
an element > a, and then scan another pointer down from the end of the array
until you find an element < a. These two elements are clearly out of place for the
final partitioned array, so exchange them. Continue this process until the pointers
cross. Thisistheright place to insert a, and that round of partitioningis done. The

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



8.2 Quicksort 333

guestion of the best strategy when an element is equal to the partitioning el ement
is subtle; we refer you to Sedgewick [1] for a discussion. (Answer: You should
stop and do an exchange.)

For speed of execution, we do not implement Quicksort using recursion. Thus
the algorithm requires an auxiliary array of storage, of length 2 log, N, which it uses
as a push-down stack for keeping track of the pending subarrays. When a subarray
has gotten down to some size M, it becomes faster to sort it by straight insertion
(§8.1), so we will do this. The optimal setting of M is machine dependent, but
M = 7 isnot too far wrong. Some people advocate leaving the short subarrays
unsorted until the end, and then doing one giant insertion sort at the end. Since
each element moves at most 7 places, thisis just as efficient as doing the sorts
immediately, and saves on the overhead. However, on modern machines with paged
memory, thereisincreased overhead when dealing with alarge array al a once. We
have not found any advantage in saving the insertion sorts till the end.

As adready mentioned, Quicksort’s average running time is fast, but its worst
case running time can be very slow: For theworst caseit is, in fact, an N2 method!
And for the most straightforward implementation of Quicksort it turns out that the
worst case is achieved for an input array that is aready in order! This ordering
of the input array might easily occur in practice. One way to avoid thisis to use
a little random number generator to choose a random element as the partitioning
element. Another isto useinstead the median of thefirst, middle, and last elements
of the current subarray.

The great speed of Quicksort comes from the simplicity and efficiency of its
inner loop. Simply adding one unnecessary test (for example, atest that your pointer
has not moved off the end of the array) can aimost double the running time! One
avoids such unnecessary tests by placing “sentinels’ at either end of the subarray
being partitioned. The leftmost sentinegl is < a, the rightmost > a. With the
“median-of-threg” selection of a partitioning element, we can use the two elements
that were not the median to be the sentinels for that subarray.

Our implementation closely follows[1]:

#include "nrutil.h"

#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;

#define M 7

#define NSTACK 50

Here M is the size of subarrays sorted by straight insertion and NSTACK is the required auxiliary
storage.

void sort(unsigned long n, float arr[])
Sorts an array arr[1..n] into ascending numerical order using the Quicksort algorithm. n is
input; arr is replaced on output by its sorted rearrangement.
{
unsigned long i,ir=n,j,k,1=1,*istack;
int jstack=0;
float a,temp;

istack=1lvector(1,NSTACK) ;
for (5;) { Insertion sort when subarray small enough.
if (ir-1 <M {
for (j=1+1;j<=ir;j++) {
a=arr[j];
for (i=j-1;i>=1;i--) {
if (arr[i] <= a) break;
arr[i+1]=arr[i];

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



334 Chapter 8.  Sorting

}
arr[i+1]=a;
}
if (jstack == 0) break;

ir=istack[jstack--]; Pop stack and begin a new round of parti-

l=istack[jstack--]; tioning.
} else {
k=(1+ir) >> 1; Choose median of left, center, and right el-

SWAP (arr [k],arr[1+1])
if (arr[1] > arrlir]) {
SWAP(arr[1],arr[ir])

ements as partitioning element a. Also
rearrange so that a[1] < a[1+1] < a[ir].

}

if (arr[1+1] > arrl[ir]) {
SWAP (arr[1+1] ,arr[ir])

}

if (arr[1l] > arr[1+1]) {
SWAP(arr[1] ,arr[1+1])

}

i=1+1; Initialize pointers for partitioning.

j=ir;

a=arr[1+1]; Partitioning element.

for (5;) { Beginning of innermost loop.
do i++; while (arr[i] < a); Scan up to find element > a.
do j--; while (arr[j] > a); Scan down to find element < a.
if (j < i) break; Pointers crossed. Partitioning complete.
SWAP (arr[i] ,arr[j1); Exchange elements.

} End of innermost loop.

arr[1+1]=arr[j];
arr[jl=a;
jstack += 2;
Push pointers to larger subarray on stack, process smaller subarray immediately.
if (jstack > NSTACK) nrerror ("NSTACK too small in sort.");
if (ir-i+1 >= j-1) {

istack[jstack]=ir;

istack[jstack-1]=i;

ir=j-1;
} else {

istack[jstack]=j-1;

istack[jstack-1]=1;

1=1i;

Insert partitioning element.

}
}
free_lvector(istack,1,NSTACK) ;

As usua you can move any other arrays around at the same time as you sort
arr. At the risk of being repetitious:

#include "nrutil.h"

#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;
#define M 7

#define NSTACK 50

void sort2(unsigned long n, float arr[], float brr[])
Sorts an array arr [1. .n] into ascending order using Quicksort, while making the corresponding
rearrangement of the array brr[1..n].
{
unsigned long i,ir=n,j,k,1=1,*istack;
int jstack=0;
float a,b,temp;

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes



8.2 Quicksort 335

istack=1lvector(1,NSTACK) ;

for (5;) {

Insertion sort when subarray small enough.

if (ir-1 < M) {
for (j=1+1;j<=ir;j++) {

}

a=arr[j];

b=brr[jl;

for (i=j-1;i>=1;i--) {
if (arr[i] <= a) break;
arr[i+1]=arr[i];
brr[i+1]=brr[i];

}

arr[i+1]=a;

brr[i+1]=b;

if (!jstack) {

free_lvector(istack,1,NSTACK);

return;
}
ir=istack[jstack]; Pop stack and begin a new round of parti-
l=istack[jstack-1]; tioning.
jstack -= 2;
} else {
k=(1+ir) >> 1; Choose median of left, center and right el-

SWAP (arr[k],arr[1+1])
SWAP (brr [k] ,brr[1+1])

ements as partitioning element a. Also

if (arr[1] > arrlir]) {

}

SWAP(arr[1],arr[ir])
SWAP (brr[1],brr[ir])

if (arr[1+1] > arr[ir]) {

SWAP (arr[1+1],arr[ir])
SWAP (brr [1+1] ,brr[ir])

}
if (arr[1l] > arr[1+1]) {

SWAP (arr[1] ,arr[1+1])
SWAP (brr[1] ,brr[1+1])

}

i=1+1; Initialize pointers for partitioning.

j=ir;

a=arr[1+1]; Partitioning element.

b=brr[1+1];

for (;;) { Beginning of innermost loop.
do i++; while (arr[i] < a); Scan up to find element > a.
do j--; while (arr([j] > a); Scan down to find element < a.
if (j < i) break; Pointers crossed. Partitioning complete.
SWAP(arr[i],arr[j]) Exchange elements of both arrays.
SWAP (brr[i] ,brr[j])

} End of innermost loop.

arr[1+1]=arr[j]; Insert partitioning element in both arrays.

arr[jl=a;

brr[1+1]=brr[j];

brr[jl=b;

jstack += 2;

Push pointers to larger subarray on stack, process smaller subarray immediately.
if (jstack > NSTACK) nrerror ("NSTACK too small in sort2.");

if (ir-i+1 >= j-1) {

istack[jstack]=ir;
istack[jstack-1]=i;
ir=j-1;

} else {

istack[jstack]l=j-1;
istack[jstack-1]=1;
1=i;

rearrange so thata[1] < a[1+1] < a[ir].

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



336 Chapter 8.  Sorting

You could, in principle, rearrange any number of additional arrays along with
brr, but this becomes wasteful as the number of such arrays becomes large. The
preferred technique is to make use of an index table, as described in §8.4.

CITED REFERENCES AND FURTHER READING:
Sedgewick, R. 1978, Communications of the ACM, vol. 21, pp. 847-857. [1]

8.3 Heapsort

While usually not quite as fast as Quicksort, Heapsort is one of our favorite
sorting routines. It isatrue “in-place” sort, requiring no auxiliary storage. Itisan
N log, N process, not only on average, but also for theworst-case order of input data
In fact, itsworst case isonly 20 percent or so worse than its average running time.

It isbeyond our scope to give a complete exposition on the theory of Heapsort.
We will mention the general principles, then let you refer to the references(1.2], or
analyze the program yoursdlf, if you want to understand the details.

A set of N numbersa;, i = 1,..., N, issaid to form a “heap” if it satisfies
the relation

ajpza; for 1<j/2<j<N (8.3.1)

Here the division in j/2 means “integer divide"” i.e., is an exact integer or else
is rounded down to the closest integer. Definition (8.3.1) will make sense if you
think of the numbers a; as being arranged in a binary tree, with the top, “boss,”
node being ai, the two “underling” nodes being a» and as, their four underling
nodes being a4 through a7, etc. (See Figure 8.3.1.) In this form, a hesp has
every “supervisor” greater than or equal to its two “supervisees,” down through
the levels of the hierarchy.

If you have managed to rearrange your array into an order that forms a heap,
then sorting it is very easy: You pull off the “top of the heap,” which will be the
largest element yet unsorted. Then you “promote” to the top of the heap its largest
underling. Then you promote its largest underling, and so on. The processis like
what happens (or is supposed to happen) in a large corporation when the chairman
of theboard retires. You then repest the whole process by retiring the new chairman
of the board. Evidently the wholethingisan N log, N process, since each retiring
chairman leads to log, N promotions of underlings.

WEell, how do you arrange the array into a hesp in the first place? The answer
isagain a“sift-up” process like corporate promotion. Imagine that the corporation
starts out with N/2 employees on the production line, but with no supervisors. Now
a supervisor is hired to supervise two workers. If he is less capable than one of
his workers, that one is promoted in his place, and he joins the production line.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



336 Chapter 8.  Sorting

You could, in principle, rearrange any number of additional arrays along with
brr, but this becomes wasteful as the number of such arrays becomes large. The
preferred technique is to make use of an index table, as described in §8.4.

CITED REFERENCES AND FURTHER READING:
Sedgewick, R. 1978, Communications of the ACM, vol. 21, pp. 847-857. [1]

8.3 Heapsort

While usually not quite as fast as Quicksort, Heapsort is one of our favorite
sorting routines. It isatrue “in-place” sort, requiring no auxiliary storage. Itisan
N log, N process, not only on average, but also for theworst-case order of input data
In fact, itsworst case isonly 20 percent or so worse than its average running time.

It isbeyond our scope to give a complete exposition on the theory of Heapsort.
We will mention the general principles, then let you refer to the references(1.2], or
analyze the program yoursdlf, if you want to understand the details.

A set of N numbersa;, i = 1,..., N, issaid to form a “heap” if it satisfies
the relation

ajpza; for 1<j/2<j<N (8.3.1)

Here the division in j/2 means “integer divide"” i.e., is an exact integer or else
is rounded down to the closest integer. Definition (8.3.1) will make sense if you
think of the numbers a; as being arranged in a binary tree, with the top, “boss,”
node being ai, the two “underling” nodes being a» and as, their four underling
nodes being a4 through a7, etc. (See Figure 8.3.1.) In this form, a hesp has
every “supervisor” greater than or equal to its two “supervisees,” down through
the levels of the hierarchy.

If you have managed to rearrange your array into an order that forms a heap,
then sorting it is very easy: You pull off the “top of the heap,” which will be the
largest element yet unsorted. Then you “promote” to the top of the heap its largest
underling. Then you promote its largest underling, and so on. The processis like
what happens (or is supposed to happen) in a large corporation when the chairman
of theboard retires. You then repest the whole process by retiring the new chairman
of the board. Evidently the wholethingisan N log, N process, since each retiring
chairman leads to log, N promotions of underlings.

WEell, how do you arrange the array into a hesp in the first place? The answer
isagain a“sift-up” process like corporate promotion. Imagine that the corporation
starts out with N/2 employees on the production line, but with no supervisors. Now
a supervisor is hired to supervise two workers. If he is less capable than one of
his workers, that one is promoted in his place, and he joins the production line.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



8.3 Heapsort 337
a
. / \

%, 8 aﬁ\ EREN
SN SN S
85 89 0 A

ap

as

Figure 8.3.1. Ordering implied by a “heap,” here of 12 elements. Elements connected by an upward
path are sorted with respect to one another, but there is not necessarily any ordering among elements
related only “laterally.”

After supervisors are hired, then supervisors of supervisors are hired, and so on up
the corporate ladder. Each employee is brought in at the top of the tree, but then
immediately sifted down, with more capable workers promoted until their proper
corporate level has been reached.

In the Heapsort implementation, the same “sift-up” code can be used for the
initial creation of the heap and for the subsequent retirement-and-promotion phase.
One execution of the Heapsort function represents the entire life-cycle of a giant
corporation: N/2 workers are hired; N/2 potential supervisors are hired; thereisa
sifting up in the ranks, a sort of super Peter Principle: in due course, each of the
origina employees gets promoted to chairman of the board.

void hpsort(unsigned long n, float ral])
Sorts an array ra[1..n] into ascending numerical order using the Heapsort algorithm. n is
input; ra is replaced on output by its sorted rearrangement.
{
unsigned long i,ir,j,1;
float rra;

if (n < 2) return;

1=(n >> 1)+1;

ir=n;

The index 1 will be decremented from its initial value down to 1 during the “hiring” (heap
creation) phase. Once it reaches 1, the index ir will be decremented from its initial value
down to 1 during the “retirement-and-promotion” (heap selection) phase.

for (5;) {

if (1> 1) { Still in hiring phase.
rra=ral[--1];
} else { In retirement-and-promotion phase.
rra=ralir]; Clear a space at end of array.
ralir]=ra[1]; Retire the top of the heap into it.
if (--ir == 1) { Done with the last promotion.
ral[l1]l=rra; The least competent worker of all!
break;
}
}
i=1; Whether in the hiring phase or promotion phase, we
j=1+1; here set up to sift down element rra to its proper
while (j <= ir) { level.

if (j < ir && ral[j]l < ral[j+1]) j++; Compare to the better underling.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



338 Chapter 8.  Sorting

if (rra < raljl) { Demote rra.
ralil=raljl;
i=j;
j <<= 1;
} else break; Found rra’s level. Terminate the sift-down.
}
ral[il=rra; Put rra into its slot.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 11. [2]

8.4 Indexing and Ranking

The concept of keys plays a prominent role in the management of datafiles. A
datarecord in such afile may contain several items, or fields. For example, arecord
in afile of weather observations may have fields recording time, temperature, and
wind velocity. When we sort the records, we must decide which of these fields we
want to be brought into sorted order. The other fields in a record just come along
for the ride, and will not, in general, end up in any particular order. The field on
which the sort is performed is called the key field.

For a data file with many records and many fields, the actual movement of NV
recordsinto the sorted order of their keys K;, i = 1, ..., N, can be a daunting task.
Instead, one can construct an index table I;, j = 1,..., N, such that the smallest
K, hasi = I, the second smallest hasi = I5, and so on up to the largest K; with
i = In. In other words, the array

K1

. J=12,...,N (84.1)
isin sorted order when indexed by j. When an index table is available, one need not
move records from their original order. Further, different index tables can be made
from the same set of records, indexing them to different keys.

The algorithm for constructing an index table is straightforward: Initiaize the
index array with the integers from 1 to NV, then perform the Quicksort algorithm,
moving the elements around asif one were sorting the keys. Theinteger that initially
numbered the smallest key thus ends up in the number one position, and so on.

#include "nrutil.h"

#define SWAP(a,b) itemp=(a); (a)=(b); (b)=itemp;
#define M 7

#define NSTACK 50

void indexx(unsigned long n, float arr[], unsigned long indx[])
Indexes an array arr [1. .n], i.e., outputs the array indx [1. .n] such that arr[indx[j1] is
in ascending order for j = 1,2,..., N. The input quantities n and arr are not changed.
{
unsigned long i,indxt,ir=n,itemp,j,k,1=1;
int jstack=0,*istack;
float a;

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



338 Chapter 8.  Sorting

if (rra < raljl) { Demote rra.
ralil=raljl;
i=j;
j <<= 1;
} else break; Found rra’s level. Terminate the sift-down.
}
ral[il=rra; Put rra into its slot.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §5.2.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 11. [2]

8.4 Indexing and Ranking

The concept of keys plays a prominent role in the management of datafiles. A
datarecord in such afile may contain several items, or fields. For example, arecord
in afile of weather observations may have fields recording time, temperature, and
wind velocity. When we sort the records, we must decide which of these fields we
want to be brought into sorted order. The other fields in a record just come along
for the ride, and will not, in general, end up in any particular order. The field on
which the sort is performed is called the key field.

For a data file with many records and many fields, the actual movement of NV
recordsinto the sorted order of their keys K;, i = 1, ..., N, can be a daunting task.
Instead, one can construct an index table I;, j = 1,..., N, such that the smallest
K, hasi = I, the second smallest hasi = I5, and so on up to the largest K; with
i = In. In other words, the array

K1

. J=12,...,N (84.1)
isin sorted order when indexed by j. When an index table is available, one need not
move records from their original order. Further, different index tables can be made
from the same set of records, indexing them to different keys.

The algorithm for constructing an index table is straightforward: Initiaize the
index array with the integers from 1 to NV, then perform the Quicksort algorithm,
moving the elements around asif one were sorting the keys. Theinteger that initially
numbered the smallest key thus ends up in the number one position, and so on.

#include "nrutil.h"

#define SWAP(a,b) itemp=(a); (a)=(b); (b)=itemp;
#define M 7

#define NSTACK 50

void indexx(unsigned long n, float arr[], unsigned long indx[])
Indexes an array arr [1. .n], i.e., outputs the array indx [1. .n] such that arr[indx[j1] is
in ascending order for j = 1,2,..., N. The input quantities n and arr are not changed.
{
unsigned long i,indxt,ir=n,itemp,j,k,1=1;
int jstack=0,*istack;
float a;

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



8.4 Indexing and Ranking 339

original index rank sorted
array table table array
14 L—(5) 4 3

@ @ @ @
8 —) 3 7

@ @ @ @
32 ~—2) 6 8

® ® ® ®
7 @ 2 14

@ @ @ @
3 ®) 1 15

® ® ® ®
15 ® 5 32

® ® ® ®

@ (© (d)

Figure 8.4.1. (a) An unsorted array of six numbers. (b) Index table, whose entries are pointers to
the elements of (&) in ascending order. (c) Rank table, whose entries are the ranks of the corresponding
elements of (a). (d) Sorted array of the elements in (a).

~
&

istack=ivector(1,NSTACK) ;
for (j=1;j<=n;j++) indx[jl=j;
for (5;) {
if (ir-1 < M) {
for (j=1+1;j<=ir;j++) {
indxt=indx[j];
a=arr [indxt];
for (i=j-1;i>=1;i--) {
if (arr[indx[i]] <= a) break;
indx[i+1]=indx[i];
}
indx [i+1]=indxt;
}
if (jstack == 0) break;
ir=istack[jstack--1;
l=istack[jstack--];
} else {
k=(1+ir) >> 1;
SWAP (indx [k],indx[1+1]);
if (arrl[indx[1]] > arr[indx[ir]l]) {
SWAP (indx[1],indx [ir])
}
if (arr[indx[1+1]] > arr[indx[ir]]) {
SWAP (indx[1+1] ,indx[ir])
}
if (arr[indx[1]] > arr[indx[1+1]]) {
SWAP (indx[1],indx [1+1])
}
i=1+1;
j=ir;
indxt=indx[1+1];

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD
(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

‘(eoLIBWY YUON SpPISINO) yn'oe wed dnd@ape.i 0] jlews puas o ‘(Ajuo eolswy YUON) £2t/-2/8-008-T [[ed 10 WO U MMM//:dny aNsgam JSIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



340

Chapter 8.  Sorting

}

a=arr [indxt];

for (55) {
do i++; while (arr[indx[il] < a);
do j--; while (arr[indx[jl] > a);
if (j < i) break;
SWAP (indx[i],indx[j])

}

indx[1+1]=indx[j];

indx[j]=indxt;

jstack += 2;

if (jstack > NSTACK) nrerror ("NSTACK too small in indexx.");

if (ir-i+1 >= j-1) {
istack[jstack]=ir;
istack[jstack-1]=i;
ir=j-1;

} else {
istack[jstack]l=j-1;
istack[jstack-1]=1;
1=i;

free_ivector(istack,1,NSTACK) ;

If you want to sort an array while making the corresponding rearrangement of
several or many other arrays, you should first make an index table, then use it to
rearrange each array in turn. This requires two arrays of working space: one to
hold the index, and another into which an array is temporarily moved, and from
which it is redeposited back on itself in the rearranged order. For 3 arrays, the

procedure looks like this:

#include "nrutil.h"

void sort3(unsigned long n, float ral], float rb[], float rc[])

Sorts an array ra[1..n] into ascending numerical order while making the corresponding re-
arrangements of the arrays rb[1..n] and rc[1..n]. An index table is constructed via the

routine indexx.

{

void indexx(unsigned long n, float arr[], unsigned long indx[1);
unsigned long j,*iwksp;
float *wksp;

iwksp=lvector(l,n);
wksp=vector(1,n);

indexx(n,ra,iwksp) ;
(j=1;j<=n;j++) wksp[jl=raljl;

for
for
for
for
for
for

Make the index table.
Save the array ra.

(j=1;j<=n;j++) raljl=wkspliwksp[jl]; Copy it back in rearranged order.
(j=1;j<=n;j++) wkspl[jl=rb[jl; Ditto rb.

(j=1;j<=n;j++) rbl[jl=wkspliwksp[jl];

(j=1;j<=n;j++) wkspljl=rcljl; Ditto rc.

(j=1;j<=n;j++) rcljl=wkspliwksp[jl];

free_vector(wksp,1,n);
free_lvector(iwksp,1,n);

The generalization to any other number of arrays is obvioudly straightforward.

A rank table is different from an index table. A rank table's jth entry givesthe

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



8.5 Selecting the Mth Largest 341

rank of the jth element of the original array of keys, ranging from 1 (if that element
was the smallest) to V (if that element was the largest). One can easily construct
a rank table from an index table, however:

void rank(unsigned long n, unsigned long indx[], unsigned long irank[])

Given indx[1..n] as output from the routine indexx, returns an array irank[1..n], the
corresponding table of ranks.

{

unsigned long j;

for (j=1;j<=n;j++) irank[indx[jl]=j;
}

Figure 8.4.1 summarizes the concepts discussed in this section.

8.5 Selecting the Mth Largest

Selectionissorting’ saustere sister. (Say that fivetimesquickly!) Where sorting
demands the rearrangement of an entire data array, selection politely asksfor asingle
returned value: What isthekthsmallest (or, equivaently,them = N+1—kthlargest)
element out of N elements? The fastest methods for selection do, unfortunately,
rearrangethearray for their own computational purposes, typically puttingall smaller
elements to the left of the kth, all larger elements to the right, and scrambling the
order within each subset. This side effect is a best innocuous, at worst downright
inconvenient. Whenthearray isvery long, so that making ascratch copy of itistaxing
on memory, or when the computational burden of the selection is a negligible part
of alarger calculation, one turnsto selection algorithms without side effects, which
leavethe origina array undisturbed. Such in place selection isslower than the faster
selection methods by afactor of about 10. We give routines of both types, below.

The most common use of selection isin the statistical characterization of a set
of data. One often wants to know the median element in an array, or the top and
bottom quartile elements. When N is odd, the median is the kth element, with
k= (N+1)/2. When N iseven, statistics books define the median as the arithmetic
mean of the dlements k = N/2 and k = N/2 + 1 (that is, N/2 from the bottom
and N/2 from thetop). If you accept such pedantry, you must perform two separate
selections to find these elements. For N > 100 we usually define k = N/2 to be
the median element, pedants be damned.

The fastest general method for selection, allowing rearrangement, is partition-
ing, exactly as was done in the Quicksort algorithm (£§8.2). Selecting a “random”
partition element, one marches through the array, forcing smaller elements to the
left, larger elements to the right. As in Quicksort, it is important to optimize the
inner loop, using “sentinels’ (§8.2) to minimize the number of comparisons. For
sorting, one would then proceed to further partition both subsets. For selection,
we can ignore one subset and attend only to the one that contains our desired kth
element. Selection by partitioning thus does not need a stack of pending operations,
and its operations count scales as N rather than as N log N (see[1]). Comparison
with sort in §8.2 should make the following routine obvious:

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



8.5 Selecting the Mth Largest 341

rank of the jth element of the original array of keys, ranging from 1 (if that element
was the smallest) to V (if that element was the largest). One can easily construct
a rank table from an index table, however:

void rank(unsigned long n, unsigned long indx[], unsigned long irank[])

Given indx[1..n] as output from the routine indexx, returns an array irank[1..n], the
corresponding table of ranks.

{

unsigned long j;

for (j=1;j<=n;j++) irank[indx[jl]=j;
}

Figure 8.4.1 summarizes the concepts discussed in this section.

8.5 Selecting the Mth Largest

Selectionissorting’ saustere sister. (Say that fivetimesquickly!) Where sorting
demands the rearrangement of an entire data array, selection politely asksfor asingle
returned value: What isthekthsmallest (or, equivaently,them = N+1—kthlargest)
element out of N elements? The fastest methods for selection do, unfortunately,
rearrangethearray for their own computational purposes, typically puttingall smaller
elements to the left of the kth, all larger elements to the right, and scrambling the
order within each subset. This side effect is a best innocuous, at worst downright
inconvenient. Whenthearray isvery long, so that making ascratch copy of itistaxing
on memory, or when the computational burden of the selection is a negligible part
of alarger calculation, one turnsto selection algorithms without side effects, which
leavethe origina array undisturbed. Such in place selection isslower than the faster
selection methods by afactor of about 10. We give routines of both types, below.

The most common use of selection isin the statistical characterization of a set
of data. One often wants to know the median element in an array, or the top and
bottom quartile elements. When N is odd, the median is the kth element, with
k= (N+1)/2. When N iseven, statistics books define the median as the arithmetic
mean of the dlements k = N/2 and k = N/2 + 1 (that is, N/2 from the bottom
and N/2 from thetop). If you accept such pedantry, you must perform two separate
selections to find these elements. For N > 100 we usually define k = N/2 to be
the median element, pedants be damned.

The fastest general method for selection, allowing rearrangement, is partition-
ing, exactly as was done in the Quicksort algorithm (£§8.2). Selecting a “random”
partition element, one marches through the array, forcing smaller elements to the
left, larger elements to the right. As in Quicksort, it is important to optimize the
inner loop, using “sentinels’ (§8.2) to minimize the number of comparisons. For
sorting, one would then proceed to further partition both subsets. For selection,
we can ignore one subset and attend only to the one that contains our desired kth
element. Selection by partitioning thus does not need a stack of pending operations,
and its operations count scales as N rather than as N log N (see[1]). Comparison
with sort in §8.2 should make the following routine obvious:

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



342 Chapter 8.  Sorting

#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;

float select(unsigned long k, unsigned long n, float arr[])

Returns the kth smallest value in the array arr[1..n]. The input array will be rearranged
to have this value in location arr [k], with all smaller elements moved to arr[1..k-1] (in
arbitrary order) and all larger elements in arr [k+1..n] (also in arbitrary order).

unsigned long i,ir,j,1,mid;
float a,temp;

1=1;
ir=n;
for (5;) {
if (ir <= 1+1) { Active partition contains 1 or 2 elements.
if (ir == 1+1 && arr[ir] < arr([1]) { Case of 2 elements.
SWAP(arr[1],arr[ir])
}
return arr[k];
} else {
mid=(1+ir) >> 1; Choose median of left, center, and right el-
SWAP (arr [mid] ,arr[1+1]) ements as partitioning element a. Also
if (arr[l] > arr[ir]) { rearrange so that arr[1] < arr[1+1],
SWAP(arr[1],arr[ir]) arr[ir] > arr([1+1].
if (arr[1+1] > arr[ir]) {
SWAP (arr[1+1] ,arr[ir])
}
if (arr[1l] > arr[1+1]) {
SWAP(arr[1],arr[1+1])
}
i=1+1; Initialize pointers for partitioning.
j=ir;
a=arr[1+1]; Partitioning element.
for (5;) { Beginning of innermost loop.
do i++; while (arr[i] < a); Scan up to find element > a.
do j--; while (arr[j] > a); Scan down to find element < a.
if (j < i) break; Pointers crossed. Partitioning complete.
SWAP(arr[i],arr[j])
} End of innermost loop.
arr[1+1]=arr[j]; Insert partitioning element.
arr[jl=a;
if (j >= k) ir=j-1; Keep active the partition that contains the
if (j <= k) 1=i; kth element.
}
}

In-place, nondestructive, selection is conceptualy simple, but it requires a lot
of bookkeeping, and it is correspondingly slower. The genera ideais to pick some
number M of elements at random, to sort them, and then to make a pass through
the array counting how many elements fall in each of the M + 1 intervals defined
by these elements. The kth largest will fall in one such interval — cdl it the “live”
interval. One then does a second round, first picking M random elementsin thelive
interval, and then determining which of the new, finer, M + 1 intervalsall presently
live eements fall into. And so on, until the kth element isfinally localized withina
single array of size M, a which point direct selection is possible.

How shall we pick M? The number of rounds, log,,; N = log, N/ log, M,
will be smaller if M islarger; but the work to locate each element among M + 1
subintervals will be larger, scaling as log, M for bisection, say. Each round

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



8.5 Selecting the Mth Largest 343

requires looking at al N elements, if only to find those that are till dive, while
the bisections are dominated by the N that occur in the first round. Minimizing
O(Nlog,; N) + O(N log, M) thus yields the result

M ~ 2V N (8.5.1)

The sguareroot of thelogarithmis so slowly varying that secondary considerationsof
machine timing become important. We use M = 64 as aconvenient constant value.

Two minor additiona tricksin thefollowingroutine, selip, are (i) augmenting
the set of M random values by an M + 1st, the arithmetic mean, and (ii) choosing
the M random values “on thefly” in a pass through the data, by a method that makes
later values no less likely to be chosen than earlier ones. (The underlyingideaisto
giveeement m > M an M /m chance of being brought into the set. You can prove
by induction that this yields the desired result.)

#include "nrutil.h"

#define M 64

#define BIG 1.0e30

#define FREEALL free_vector(sel,1,M+2);free_lvector(isel,1,M+2);

float selip(unsigned long k, unsigned long n, float arr[])
Returns the kth smallest value in the array arr[1..n]. The input array is not altered.
{

void shell(unsigned long n, float all);

unsigned long i,j,jl,jm,ju,kk,mm,nlo,nxtmm, *isel;

float ahi,alo,sum,*sel;

if (k <1 |] k>n || n <= 0) nrerror("bad input to selip");
isel=1lvector(1,M+2);
sel=vector (1,M+2);

kk=k;
ahi=BIG;
alo = -BIG;
for (5;) { Main iteration loop, until desired ele-
mm=nlo=0; ment is isolated.
sum=0.0;
nxtmm=M+1;

for (i=1;i<=n;i++) { Make a pass through the whole array.
if (arr[i] >= alo && arr[i] <= ahi) {
Consider only elements in the current brackets.
mm++;
if (arr[i] == alo) nlo++; In case of ties for low bracket.
Now use statistical procedure for selecting m in-range elements with equal
probability, even without knowing in advance how many there are!
if (mm <= M) sel[mm]=arr[i];
else if (mm == nxtmm) {
nxtmm=mm+mm/M;
sel[1 + ((i+mm+kk) % M)I=arr[il; TheJ operation provides a some-
} what random number.
sum += arr[i];

}

}

if (kk <= nlo) { Desired element is tied for lower bound;
FREEALL return it.
return alo;

}

else if (mm <= M) { All in-range elements were kept. So re-
shell (mm,sel); turn answer by direct method.
ahi = sell[kk];

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



344 Chapter 8.  Sorting

FREEALL
return ahi;
}
sel [M+1]=sum/mm; Augment selected set by mean value (fixes
shell (M+1,sel); degeneracies), and sort it.
sel[M+2]=ahi;
for (j=1;j<=M+2;j++) isel[j]=0; Zero the count array.
for (i=1;i<=n;i++) { Make another pass through the array.
if (arr[i] >= alo && arr[i] <= ahi) { For each in-range element..
j1=0;
ju=M+2;
while (ju-jl > 1) { ...find its position among the select by

jm=(ju+jl)/2; bisection...
if (arr[i] >= sell[jm]) jl=jm;
else ju=jm;
}
isel[jul++; ...and increment the counter.
}
}
j=1; Now we can narrow the bounds to just
while (kk > isel[j]) { one bin, that is, by a factor of order
alo=sell[j]; m.
kk -= isel[j++];
}
ahi=sel[j];

Approximate timings: selip isabout 10 times dower than select. Indeed,
for N in the range of ~ 10°, selip isabout 1.5 times slower than a full sort with
sort, while select is about 6 times faster than sort. You should weigh time
against memory and convenience carefully.

Of course neither of the above routines should be used for the trivial cases of
finding the largest, or smallest, element in an array. Those cases, you code by hand
assimple for loops. There are a so good ways to code the case where k ismodest in
comparison to NV, so that extramemory of order & is not burdensome. An example
is to use the method of Heapsort (§8.3) to make a single pass through an array of
length N while saving the m largest elements. The advantage of the heap structure
isthat only log m, rather than m, comparisons are required every time anew element
is added to the candidate list. This becomes ared savingswhenm > O(v/N), but
it never hurts otherwise and is easy to code. The following program givesthe idea.

void hpsel(unsigned long m, unsigned long n, float arr[], float heapl[])
Returns in heap [1. .m] the largest m elements of the array arr[1. .n], with heap[1] guaran-
teed to be the the mth largest element. The array arr is not altered. For efficiency, this routine
should be used only when m < n.
{

void sort(unsigned long n, float arr([]);

void nrerror(char error_text[]);

unsigned long i, j,k;

float swap;

if (m > n/2 || m < 1) nrerror("probable misuse of hpsel");

for (i=1;i<=m;i++) heap[il=arr[i];

sort (m,heap) ; Create initial heap by overkilll We assume m < n.

for (i=m+1;i<=n;i++) { For each remaining element...
if (arr[i] > heap[1]) { Put it on the heap?
heap[i]l=arr[i];
for (j=1;;) { Sift down.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



8.6 Determination of Equivalence Classes 345

k=j << 1;

if (k > m) break;

if (k != m && heap[k] > heap[k+1]) k++;
if (heap[j] <= heap[k]) break;
swap=heap[k];

heap[k]=heapl[j];

heap[j]l=swap;

j=k;

CITED REFERENCES AND FURTHER READING:
Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

A number of techniquesfor sorting and searching relate to data structures whose details
are beyond the scope of this book, for example, trees, linked lists, etc. These structures and
their manipulations are the bread and butter of computer science, as distinct from numerical
analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipulation,
namely the determination of equivalence classes, arises sufficiently often to justify inclusion
here.

The problem isthis: There are N “elements’ (or “data points” or whatever), numbered
1,...,N. You are given pairwise information about whether elements are in the same
equivalence class of “sameness,” by whatever criterion happens to be of interest. For
example, you may have a list of factslike: “Element 3 and element 7 are in the same class;
element 19 and element 4 are in the same class; element 7 and element 12 are in the same
class, ....” Alternatively, you may have a procedure, given the numbers of two elements
j and k, for deciding whether they are in the same class or different classes. (Recall that
an equivalence relation can be anything satisfying the RST properties: reflexive, symmetric,
transitive. This is compatible with any intuitive definition of “sameness.”)

The desired output is an assignment to each of the V elements of an eguivalence class
number, such that two elements are in the same class if and only if they are assigned the
same class number.

Efficient algorithms work like this: Let F'(j) bethe classor “family” number of element
j. Start off with each element in its own family, so that F'(j) = j. Thearray F'(j) can be
interpreted asatree structure, where F'(j) denotesthe parent of ;. If wearrangefor eachfamily
to be its own tree, digoint from all the other “family trees,” then we can label each family
(equivalence class) by its most senior great-great-. . .grandparent. The detailed topology of
the tree doesn’'t matter at all, aslong aswe graft each related element onto it somewhere.

Therefore, we process each elemental datum “; is eguivalent to k£” by (i) tracking j
up to its highest ancestor, (ii) tracking & up to its highest ancestor, (iii) giving j to k as a
new parent, or vice versa (it makes no difference). After processing al the relations, we go
through all the elements j and reset their F'(j)’s to their highest possible ancestors, which
then label the equivalence classes.

The following routine, based on Knuth [1], assumes that there are m elemental pieces
of information, stored in two arrays of length m, 1ista,listb, the interpretation being
that 1istalj] and 1istb[j], j=1...m are the numbers of two elements which (we are
thus told) are related.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



8.6 Determination of Equivalence Classes 345

k=j << 1;

if (k > m) break;

if (k != m && heap[k] > heap[k+1]) k++;
if (heap[j] <= heap[k]) break;
swap=heap[k];

heap[k]=heapl[j];

heap[j]l=swap;

j=k;

CITED REFERENCES AND FURTHER READING:
Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

A number of techniquesfor sorting and searching relate to data structures whose details
are beyond the scope of this book, for example, trees, linked lists, etc. These structures and
their manipulations are the bread and butter of computer science, as distinct from numerical
analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipulation,
namely the determination of equivalence classes, arises sufficiently often to justify inclusion
here.

The problem isthis: There are N “elements’ (or “data points” or whatever), numbered
1,...,N. You are given pairwise information about whether elements are in the same
equivalence class of “sameness,” by whatever criterion happens to be of interest. For
example, you may have a list of factslike: “Element 3 and element 7 are in the same class;
element 19 and element 4 are in the same class; element 7 and element 12 are in the same
class, ....” Alternatively, you may have a procedure, given the numbers of two elements
j and k, for deciding whether they are in the same class or different classes. (Recall that
an equivalence relation can be anything satisfying the RST properties: reflexive, symmetric,
transitive. This is compatible with any intuitive definition of “sameness.”)

The desired output is an assignment to each of the V elements of an eguivalence class
number, such that two elements are in the same class if and only if they are assigned the
same class number.

Efficient algorithms work like this: Let F'(j) bethe classor “family” number of element
j. Start off with each element in its own family, so that F'(j) = j. Thearray F'(j) can be
interpreted asatree structure, where F'(j) denotesthe parent of ;. If wearrangefor eachfamily
to be its own tree, digoint from all the other “family trees,” then we can label each family
(equivalence class) by its most senior great-great-. . .grandparent. The detailed topology of
the tree doesn’'t matter at all, aslong aswe graft each related element onto it somewhere.

Therefore, we process each elemental datum “; is eguivalent to k£” by (i) tracking j
up to its highest ancestor, (ii) tracking & up to its highest ancestor, (iii) giving j to k as a
new parent, or vice versa (it makes no difference). After processing al the relations, we go
through all the elements j and reset their F'(j)’s to their highest possible ancestors, which
then label the equivalence classes.

The following routine, based on Knuth [1], assumes that there are m elemental pieces
of information, stored in two arrays of length m, 1ista,listb, the interpretation being
that 1istalj] and 1istb[j], j=1...m are the numbers of two elements which (we are
thus told) are related.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



346 Chapter 8.  Sorting

void eclass(int nf[], int n, int listal], int listb[], int m)
Given m equivalences between pairs of n individual elements in the form of the input arrays
listal1..m] and 1istb[1..m], this routine returns in nf [1..n] the number of the equiv-
alence class of each of the n elements, integers between 1 and n (not all such integers used).
{

int 1,k,j;

Initialize each element its own class.
For each piece of input information...

for (k=1;k<=n;k++) nf[k]=k;
for (1=1;1<=m;1++) {

j=listall];

while (nf[j] !'= j) j=nfljl; Track first element up to its ancestor.
k=listb[1];

while (nf[k] !'= k) k=nf[k]; Track second element up to its ancestor.

if (j '= k) nfl[jl=k; If they are not already related, make them
} so.
for (j=1;j<=n;j++) Final sweep up to highest ancestors.

while (nf[j] !'= nf[nf[jl]) nfl[jl=nf[nfl[jl];

Alternatively, we may be ableto construct afunction equiv (j ,k) that returns anonzero
(true) value if elements j and k are related, or a zero (false) value if they are not. Then we
want to loop over all pairs of elements to get the complete picture. D. Eardley has devised
a clever way of doing this while simultaneously sweeping the tree up to high ancestorsin a
manner that keeps it current and obviates most of the final sweep phase:

void eclazz(int nf[], int n, int (*equiv) (int, int))
Given a user-supplied boolean function equiv which tells whether a pair of elements, each in
the range 1. . .n, are related, return in nf [1. .n] equivalence class numbers for each element.

{

int kk,jj;

nf[1]=1;

for (jj=2;jj<=n;jj++) { Loop over first element of all pairs.
nf[331=53;
for (kk=1;kk<=(jj-1);kk++) { Loop over second element of all pairs.

nf [kk]=nf [nf [kk]]; Sweep it up this much.
if ((*equiv) (jj,kk)) nf [nf [nf[kk]]1]=jj;
Good exercise for the reader to figure out why this much ancestry is necessary!
}
}
for (jj=1;jj<=n;jj++) nf[jjl=nflnf(jjl]; Only this much sweeping is needed
} finally.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §2.3.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 30.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



	c8-0
	c8-1
	c8-2
	c8-3
	c8-4
	c8-5
	c8-6

